Suppr超能文献

多种微管生成途径之间的协同作用赋予了中心体驱动的有丝分裂纺锤体形成的稳健性。

Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation.

机构信息

Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.

Istituto Pasteur-Fondazione Cenci Bolognetti, "La Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.

出版信息

Dev Cell. 2014 Jan 13;28(1):81-93. doi: 10.1016/j.devcel.2013.12.001. Epub 2014 Jan 2.

Abstract

The mitotic spindle is defined by its organized, bipolar mass of microtubules, which drive chromosome alignment and segregation. Although different cells have been shown to use different molecular pathways to generate the microtubules required for spindle formation, how these pathways are coordinated within a single cell is poorly understood. We have tested the limits within which the Drosophila embryonic spindle forms, disrupting the inherent temporal control that overlays mitotic microtubule generation, interfering with the molecular mechanism that generates new microtubules from preexisting ones, and disrupting the spatial relationship between microtubule nucleation and the usually dominant centrosome. Our work uncovers the possible routes to spindle formation in embryos and establishes the central role of Augmin in all microtubule-generating pathways. It also demonstrates that the contributions of each pathway to spindle formation are integrated, highlighting the remarkable flexibility with which cells can respond to perturbations that limit their capacity to generate microtubules.

摘要

有丝分裂纺锤体由其有序的、两极的微管组成,微管驱动染色体的排列和分离。虽然已经证明不同的细胞使用不同的分子途径来产生形成纺锤体所需的微管,但这些途径在单个细胞内是如何协调的还知之甚少。我们已经测试了果蝇胚胎纺锤体形成的极限,破坏了叠加在有丝分裂微管生成上的固有时间控制,干扰了从现有微管生成新微管的分子机制,并破坏了微管核与通常占主导地位的中心体之间的空间关系。我们的工作揭示了胚胎中纺锤体形成的可能途径,并确立了 Augmin 在所有微管生成途径中的核心作用。它还表明,每条途径对纺锤体形成的贡献是相互整合的,这突出了细胞对限制其产生微管能力的干扰做出反应的显著灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1617/3898610/94248467ddac/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验