Molecular Biology, Princeton University, Princeton, NJ, USA.
Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
基于微管的纺锤体在细胞分裂过程中协调染色体分离。经过一个多世纪的研究,已经描述了许多有助于纺锤体组装的成分和途径,但纺锤体如何稳健地组装仍然不完全清楚。这个过程涉及到大量分子部件的自组织 - 脊椎动物细胞中多达数十万 - 它们的局部相互作用产生了具有涌现结构、力学和功能的细胞尺度结构。在这篇综述中,我们讨论了我们对纺锤体组装的理解中的关键概念,重点介绍了最近的进展和使这些进展成为可能的新方法。我们描述了通过以空间控制的方式驱动微管核生成来产生纺锤体微管框架的途径,并介绍了关于将单个微管组织成结构模块的最新见解。最后,我们讨论了使稳健的染色体分离成为可能的纺锤体的涌现性质。