Suppr超能文献

纺锤体组装和稳定性的机制。

Mechanisms underlying spindle assembly and robustness.

机构信息

Molecular Biology, Princeton University, Princeton, NJ, USA.

Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.

出版信息

Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.

Abstract

The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.

摘要

基于微管的纺锤体在细胞分裂过程中协调染色体分离。经过一个多世纪的研究,已经描述了许多有助于纺锤体组装的成分和途径,但纺锤体如何稳健地组装仍然不完全清楚。这个过程涉及到大量分子部件的自组织 - 脊椎动物细胞中多达数十万 - 它们的局部相互作用产生了具有涌现结构、力学和功能的细胞尺度结构。在这篇综述中,我们讨论了我们对纺锤体组装的理解中的关键概念,重点介绍了最近的进展和使这些进展成为可能的新方法。我们描述了通过以空间控制的方式驱动微管核生成来产生纺锤体微管框架的途径,并介绍了关于将单个微管组织成结构模块的最新见解。最后,我们讨论了使稳健的染色体分离成为可能的纺锤体的涌现性质。

相似文献

1
Mechanisms underlying spindle assembly and robustness.
Nat Rev Mol Cell Biol. 2023 Aug;24(8):523-542. doi: 10.1038/s41580-023-00584-0. Epub 2023 Mar 28.
2
Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation.
J Cell Sci. 2017 Jul 1;130(13):2097-2110. doi: 10.1242/jcs.200261.
3
Mechanisms of mitotic spindle assembly and function.
Int Rev Cytol. 2008;265:111-58. doi: 10.1016/S0074-7696(07)65003-7.
4
Microtubule nucleation for spindle assembly: one molecule at a time.
Trends Biochem Sci. 2023 Sep;48(9):761-775. doi: 10.1016/j.tibs.2023.06.004. Epub 2023 Jul 21.
6
Mechanisms of Mitotic Spindle Assembly.
Annu Rev Biochem. 2016 Jun 2;85:659-83. doi: 10.1146/annurev-biochem-060815-014528. Epub 2016 Apr 21.
7
Interplay between spindle architecture and function.
Int Rev Cell Mol Biol. 2013;306:83-125. doi: 10.1016/B978-0-12-407694-5.00003-1.
8
Mechanisms of spindle assembly and size control.
Biol Cell. 2020 Dec;112(12):369-382. doi: 10.1111/boc.202000065. Epub 2020 Sep 2.
9
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore.
Nat Rev Mol Cell Biol. 2013 Jan;14(1):25-37. doi: 10.1038/nrm3494.
10
The spindle: a dynamic assembly of microtubules and motors.
Nat Cell Biol. 2001 Jan;3(1):E28-34. doi: 10.1038/35050669.

引用本文的文献

1
NuMA mechanically reinforces the spindle independently of its partner dynein.
Curr Biol. 2025 Jul 30. doi: 10.1016/j.cub.2025.07.028.
2
NuMA mechanically reinforces the spindle independently of its partner dynein.
bioRxiv. 2024 Dec 1:2024.11.29.622360. doi: 10.1101/2024.11.29.622360.
5
Aurora kinases signaling in cancer: from molecular perception to targeted therapies.
Mol Cancer. 2025 Jun 18;24(1):180. doi: 10.1186/s12943-025-02353-3.
6
Cell state-specific cytoplasmic density controls spindle architecture and scaling.
Nat Cell Biol. 2025 Jun;27(6):959-971. doi: 10.1038/s41556-025-01678-x. Epub 2025 Jun 13.
7
Mechanical force locally damages, remodels and stabilizes the lattice of spindle microtubules.
bioRxiv. 2025 Jun 6:2025.06.05.657915. doi: 10.1101/2025.06.05.657915.
8
Archaeal SegAB forms a bipolar structure that promotes chromosome segregation in spherical cells.
bioRxiv. 2025 May 21:2025.04.15.649018. doi: 10.1101/2025.04.15.649018.
10
KIF2C is essential for meiosis and manchette dynamics in male mice.
Front Cell Dev Biol. 2025 Mar 27;13:1523593. doi: 10.3389/fcell.2025.1523593. eCollection 2025.

本文引用的文献

2
Three-dimensional structure of kinetochore-fibers in human mitotic spindles.
Elife. 2022 Jul 27;11:e75459. doi: 10.7554/eLife.75459.
3
Genetic Control of Kinetochore-Driven Microtubule Growth in Mitosis.
Cells. 2022 Jul 6;11(14):2127. doi: 10.3390/cells11142127.
5
Reconstitution and mechanistic dissection of the human microtubule branching machinery.
J Cell Biol. 2022 Jul 4;221(7). doi: 10.1083/jcb.202109053. Epub 2022 May 23.
6
The chirality of the mitotic spindle provides a mechanical response to forces and depends on microtubule motors and augmin.
Curr Biol. 2022 Jun 6;32(11):2480-2493.e6. doi: 10.1016/j.cub.2022.04.035. Epub 2022 May 9.
7
Augmin-dependent microtubule self-organization drives kinetochore fiber maturation in mammals.
Cell Rep. 2022 Apr 5;39(1):110610. doi: 10.1016/j.celrep.2022.110610.
8
A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches.
Nat Phys. 2021 Apr;17(4):493-498. doi: 10.1038/s41567-020-01141-8. Epub 2021 Jan 28.
9
Naegleria's mitotic spindles are built from unique tubulins and highlight core spindle features.
Curr Biol. 2022 Mar 28;32(6):1247-1261.e6. doi: 10.1016/j.cub.2022.01.034. Epub 2022 Feb 8.
10
Non-centrosomal microtubules at kinetochores promote rapid chromosome biorientation during mitosis in human cells.
Curr Biol. 2022 Mar 14;32(5):1049-1063.e4. doi: 10.1016/j.cub.2022.01.013. Epub 2022 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验