Häkkinen Antti, Kandhavelu Meenakshisundaram, Garasto Stefania, Ribeiro Andre S
Department of Signal Processing, Laboratory of Biosystem Dynamics, Computational Systems Biology Research Group, Tampere University of Technology, Tampere, Finland.
Bioinformatics. 2014 Apr 15;30(8):1146-1153. doi: 10.1093/bioinformatics/btt766. Epub 2014 Jan 2.
Present research on gene expression using live cell imaging and fluorescent proteins or tagged RNA requires accurate automated methods of quantification of these molecules from the images. Here, we propose a novel automated method for classifying pixel intensities of fluorescent spots to RNA numbers.
The method relies on a new model of intensity distributions of tagged RNAs, for which we estimated parameter values in maximum likelihood sense from measurement data, and constructed a maximum a posteriori classifier to estimate RNA numbers in fluorescent RNA spots. We applied the method to estimate the number of tagged RNAs in individual live Escherichia coli cells containing a gene coding for an RNA with MS2-GFP binding sites. We tested the method using two constructs, coding for either 96 or 48 binding sites, and obtained similar distributions of RNA numbers, showing that the method is adaptive. We further show that the results agree with a method that uses time series data and with quantitative polymerase chain reaction measurements. Lastly, using simulated data, we show that the method is accurate in realistic parameter ranges. This method should, in general, be applicable to live single-cell measurements of low-copy number fluorescence-tagged molecules.
MATLAB extensions written in C for parameter estimation and finding decision boundaries are available under Mozilla public license at http://www.cs.tut.fi/%7ehakkin22/estrna/ CONTACT: andre.ribeiro@tut.fi.
目前利用活细胞成像以及荧光蛋白或标记RNA进行基因表达研究,需要从图像中对这些分子进行准确的自动定量方法。在此,我们提出一种新的自动方法,用于将荧光点的像素强度分类为RNA数量。
该方法依赖于一种新的标记RNA强度分布模型,我们从测量数据中以最大似然意义估计其参数值,并构建了一个最大后验分类器来估计荧光RNA斑点中的RNA数量。我们将该方法应用于估计单个含有编码带有MS2 - GFP结合位点RNA基因的活大肠杆菌细胞中的标记RNA数量。我们使用编码96个或48个结合位点的两种构建体测试了该方法,并获得了相似的RNA数量分布,表明该方法具有适应性。我们进一步表明,结果与使用时间序列数据的方法以及定量聚合酶链反应测量结果一致。最后,使用模拟数据,我们表明该方法在实际参数范围内是准确的。一般来说,这种方法应该适用于低拷贝数荧光标记分子的活单细胞测量。
用于参数估计和寻找决策边界的用C编写的MATLAB扩展可在Mozilla公共许可证下从http://www.cs.tut.fi/%7ehakkin22/estrna/获取。联系方式:andre.ribeiro@tut.fi。