Häkkinen Antti, Ribeiro Andre S
Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, P.O. box 553, 33101, Tampere, Finland.
Bioinformatics. 2016 May 1;32(9):1346-52. doi: 10.1093/bioinformatics/btv744. Epub 2015 Dec 31.
Single-molecule measurements of live Escherichia coli transcription dynamics suggest that this process ranges from sub- to super-Poissonian, depending on the conditions and on the promoter. For its accurate quantification, we propose a model that accommodates all these settings, and statistical methods to estimate the model parameters and to select the relevant components.
The new methodology has improved accuracy and avoids overestimating the transcription rate due to finite measurement time, by exploiting unobserved data and by accounting for the effects of discrete sampling. First, we use Monte Carlo simulations of models based on measurements to show that the methods are reliable and offer substantial improvements over previous methods. Next, we apply the methods on measurements of transcription intervals of different promoters in live E. coli, and show that they produce significantly different results, both in low- and high-noise settings, and that, in the latter case, they even lead to qualitatively different results. Finally, we demonstrate that the methods can be generalized for other similar purposes, such as for estimating gene activation kinetics. In this case, the new methods allow quantifying the inducer uptake dynamics as opposed to just comparing them between cases, which was not previously possible. We expect this new methodology to be a valuable tool for functional analysis of cellular processes using single-molecule or single-event microscopy measurements in live cells.
Source code is available under Mozilla Public License at http://www.cs.tut.fi/%7Ehakkin22/censored/
andre.ribeiro@tut.fi or andre.sanchesribeiro@tut.fi
Supplementary data are available at Bioinformatics online.
对活的大肠杆菌转录动力学进行的单分子测量表明,根据条件和启动子的不同,这个过程的分布范围从亚泊松分布到超泊松分布。为了进行准确的量化,我们提出了一个适用于所有这些情况的模型,以及用于估计模型参数和选择相关组件的统计方法。
新方法提高了准确性,通过利用未观测数据并考虑离散采样的影响,避免了由于有限测量时间而高估转录速率的问题。首先,我们基于测量结果对模型进行蒙特卡罗模拟,以表明这些方法是可靠的,并且比以前的方法有显著改进。接下来,我们将这些方法应用于活大肠杆菌中不同启动子转录间隔的测量,并表明它们在低噪声和高噪声环境下都产生了显著不同的结果,而且在后一种情况下,甚至导致了定性不同的结果。最后,我们证明这些方法可以推广到其他类似目的,例如估计基因激活动力学。在这种情况下,新方法允许量化诱导物摄取动力学,而不仅仅是在不同情况之间进行比较,这在以前是不可能的。我们期望这种新方法成为使用活细胞中的单分子或单事件显微镜测量对细胞过程进行功能分析的有价值工具。
源代码可在http://www.cs.tut.fi/%7Ehakkin22/censored/ 以Mozilla公共许可证获取。
andre.ribeiro@tut.fi 或andre.sanchesribeiro@tut.fi
补充数据可在《生物信息学》在线获取。