Suppr超能文献

一种纳米分散的铁蛋白核心模拟物,可有效纠正贫血,且无腔内铁氧化还原活性。

A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity.

作者信息

Powell Jonathan J, Bruggraber Sylvaine F A, Faria Nuno, Poots Lynsey K, Hondow Nicole, Pennycook Timothy J, Latunde-Dada Gladys O, Simpson Robert J, Brown Andy P, Pereira Dora I A

机构信息

MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK.

MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK.

出版信息

Nanomedicine. 2014 Oct;10(7):1529-38. doi: 10.1016/j.nano.2013.12.011. Epub 2014 Jan 4.

Abstract

The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~2.7Å for the main Bragg peak versus 2.6Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the clinical editor: Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation.

摘要

与纯合成类似物水铁矿相比,铁蛋白中2-5纳米的氢氧化铁(III)核心的有序程度较低,且生物利用率更高。我们报道了一种简便的合成方法,可制备出酒石酸盐修饰的、纳米分散的水铁矿,其一次粒径小,但晶格结构扩大或应变(主要布拉格峰为~2.7Å,而合成水铁矿为2.6Å)。分析表明,在水铁矿颗粒形成过程中,可实现酒石酸盐共沉淀,这会延缓生长和结晶,并有利于交联聚合物结构的稳定。在小鼠模型中,胃肠道吸收与管腔中铁(III)还原为铁(II)无关,然而,其吸收效果与硫酸亚铁相当,能有效纠正诱导性贫血。这一过程可模拟膳食中铁(III)的吸收,并可能提供一种无副作用的廉价补充铁形式。临床编辑评论:在小鼠模型中,小尺寸酒石酸盐修饰的纳米分散水铁矿用于高效胃肠道递送可溶性铁(III),且无产生自由基的风险。该方法可能提供一种潜在无副作用的铁补充形式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1487/4315135/a2b475e02ab8/fx1.jpg

相似文献

1
A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity.
Nanomedicine. 2014 Oct;10(7):1529-38. doi: 10.1016/j.nano.2013.12.011. Epub 2014 Jan 4.
3
Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans.
Nanomedicine. 2014 Nov;10(8):1877-86. doi: 10.1016/j.nano.2014.06.012. Epub 2014 Jun 28.
4
Fe(II) formation after interaction of the amyloid β-peptide with iron-storage protein ferritin.
J Biol Phys. 2018 Sep;44(3):237-243. doi: 10.1007/s10867-018-9498-3. Epub 2018 May 9.
6
Caco-2 cell acquisition of dietary iron(III) invokes a nanoparticulate endocytic pathway.
PLoS One. 2013 Nov 21;8(11):e81250. doi: 10.1371/journal.pone.0081250. eCollection 2013.
7
Ferritin and ferrihydrite nanoparticles as iron sources for Pseudomonas aeruginosa.
J Biol Inorg Chem. 2013 Mar;18(3):371-81. doi: 10.1007/s00775-013-0981-9. Epub 2013 Feb 16.
8
Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral Nano Fe(III).
Microbiologyopen. 2015 Feb;4(1):12-27. doi: 10.1002/mbo3.213. Epub 2014 Dec 2.
9
Catalysis of iron core formation in Pyrococcus furiosus ferritin.
J Biol Inorg Chem. 2009 Nov;14(8):1265-74. doi: 10.1007/s00775-009-0571-z. Epub 2009 Jul 22.
10
Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands.
Environ Sci Technol. 2019 Dec 3;53(23):13636-13647. doi: 10.1021/acs.est.9b03952. Epub 2019 Nov 13.

引用本文的文献

7
A Synthetic Ferritin Core Analog Functions as a Next-Generation Iron Supplement.
J Nutr. 2022 Mar 3;152(3):651-652. doi: 10.1093/jn/nxab436.
9
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications.
Nanomaterials (Basel). 2021 Nov 4;11(11):2958. doi: 10.3390/nano11112958.

本文引用的文献

1
Caco-2 cell acquisition of dietary iron(III) invokes a nanoparticulate endocytic pathway.
PLoS One. 2013 Nov 21;8(11):e81250. doi: 10.1371/journal.pone.0081250. eCollection 2013.
2
Luminal iron levels govern intestinal tumorigenesis after Apc loss in vivo.
Cell Rep. 2012 Aug 30;2(2):270-82. doi: 10.1016/j.celrep.2012.07.003. Epub 2012 Aug 9.
4
Iron biofortification in rice: it's a long way to the top.
Plant Sci. 2012 Jul;190:24-39. doi: 10.1016/j.plantsci.2012.03.004. Epub 2012 Mar 23.
6
A new approach to the ferritin iron core growth: influence of the H/L ratio on the core shape.
Dalton Trans. 2012 Jan 28;41(4):1320-4. doi: 10.1039/c1dt11205h. Epub 2011 Dec 1.
7
Biofortification for combating 'hidden hunger' for iron.
Trends Plant Sci. 2012 Jan;17(1):47-55. doi: 10.1016/j.tplants.2011.10.003. Epub 2011 Nov 16.
8
Prevalence of maternal anaemia and its predictors: a multi-centre study.
Eur J Obstet Gynecol Reprod Biol. 2011 Nov;159(1):99-105. doi: 10.1016/j.ejogrb.2011.07.041. Epub 2011 Sep 3.
10
Receptor-mediated cellular uptake of nanoparticles: a switchable delivery system.
Small. 2011 Jun 6;7(11):1538-41. doi: 10.1002/smll.201100238. Epub 2011 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验