Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China.
Nanotechnology. 2014 Jan 31;25(4):045702. doi: 10.1088/0957-4484/25/4/045702. Epub 2014 Jan 6.
Electric field-induced particle polarization is essential to the electro-responsive electrorheological (ER) effect of particle suspensions. In this work, we use graphene oxide (GO) as a soft and polar coating shell to prepare GO-wrapped titania dielectric microspheres for use as the dispersal phase of an ER suspension. Under a DC electric field, the ER characteristic of GO-wrapped titania microspheres dispersed in silicone oil is investigated by rheological tests, and then compared with that of a suspension of bare titania microspheres. The results show that the suspension of GO-wrapped titania microspheres possesses an enhanced ER characteristic. Its field-induced shear yield stress and storage modulus are much higher than those of the suspension of bare titania microspheres. The soft and polar GO shell is regarded as the origin of the ER enhancement. Dielectric analysis indicates that wrapping GO can enhance the interfacial polarization and thus improve the ER characteristics of titania microspheres. Wrapping GO onto the surface of titania microspheres can also reduce the particle sedimentation velocity of the suspension.
电场诱导粒子极化是颗粒悬浮液电响应电流变(ER)效应的关键。在这项工作中,我们使用氧化石墨烯(GO)作为软且具有极性的包覆壳,制备了 GO 包裹的二氧化钛介电微球,用作 ER 悬浮液的分散相。通过流变学测试研究了在直流电场下硅油中分散的 GO 包裹的二氧化钛微球的 ER 特性,并与 bare 二氧化钛微球悬浮液进行了比较。结果表明,GO 包裹的二氧化钛微球悬浮液具有增强的 ER 特性。其电场诱导剪切屈服应力和储能模量均高于 bare 二氧化钛微球悬浮液。软质且具有极性的 GO 壳被认为是 ER 增强的起源。介电分析表明,包覆 GO 可以增强界面极化,从而改善二氧化钛微球的 ER 特性。在二氧化钛微球表面包覆 GO 还可以降低悬浮液中颗粒的沉降速度。