Departamento de Arquitectura y Tecnología de Computadores y Ciencia de la Computacióne e Inteligencia Artificial, Universidad Rey Juan Carlos (URJC), Madrid, Spain,
Neuroinformatics. 2014 Apr;12(2):341-53. doi: 10.1007/s12021-013-9195-0.
Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.
树突棘是中枢神经系统许多类型神经元树突上的小突起,是兴奋性突触的主要靶标。出于这个原因,许多解剖学、生理学和计算研究都集中在这些结构上。在大脑皮层中,最丰富和最具特征的神经元类型是锥体细胞(约占所有神经元的 85%),它们的树突棘是兴奋性谷氨酸能突触的主要 Postsynaptic 靶标。因此,我们对大脑皮层突触组织的理解在很大程度上取决于对锥体细胞树突棘的突触输入的了解。现代神经科学产生的关于树突棘的大量结构数据涉及使用为此目的开发的标准统计和数学工具和软件对来自光和电子显微镜的图像堆栈进行定量分析。在这里,我们提出了一种新的方法,用音乐反馈来探索锥体神经元中的树突棘形态和分布模式。我们证明,对形态上似乎相似的棘突进行音频分析可能会“听起来”非常不同,从而揭示出从简单的视觉检查中不明显的解剖学基础。这些形态/音乐翻译可以作为进一步对锥体神经元和一般棘突设计进行数学分析的指南。
Neuroinformatics. 2014-4
Neuroinformatics. 2012-10
Neuroscience. 2006
Neuroinformatics. 2012-10
Proc Natl Acad Sci U S A. 2010-6-7
Trends Neurosci. 2010-3
Front Neurosci. 2007-10-15
Nat Rev Neurosci. 2008-3
Neuroscience. 2007-3-16
Proc Natl Acad Sci U S A. 2006-11-21
Proc Natl Acad Sci U S A. 2006-1-31