Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, and Center for NanoBio Integration, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Trends Neurosci. 2010 Mar;33(3):121-9. doi: 10.1016/j.tins.2010.01.001.
Recent studies show that dendritic spines are dynamic structures. Their rapid creation, destruction and shape-changing are essential for short- and long-term plasticity at excitatory synapses on pyramidal neurons in the cerebral cortex. The onset of long-term potentiation, spine-volume growth and an increase in receptor trafficking are coincident, enabling a 'functional readout' of spine structure that links the age, size, strength and lifetime of a synapse. Spine dynamics are also implicated in long-term memory and cognition: intrinsic fluctuations in volume can explain synapse maintenance over long periods, and rapid, activity-triggered plasticity can relate directly to cognitive processes. Thus, spine dynamics are cellular phenomena with important implications for cognition and memory. Furthermore, impaired spine dynamics can cause psychiatric and neurodevelopmental disorders.
最近的研究表明,树突棘是动态结构。它们的快速形成、破坏和形状改变对于大脑皮层锥体神经元兴奋性突触的短期和长期可塑性至关重要。长时程增强的开始、棘突体积的增长和受体运输的增加是同时发生的,这使得棘突结构的“功能读出”成为可能,它将突触的年龄、大小、强度和寿命联系起来。棘突动力学也与长期记忆和认知有关:体积的固有波动可以解释长时间内突触的维持,而快速的、活动触发的可塑性可以直接与认知过程相关。因此,棘突动力学是具有认知和记忆重要意义的细胞现象。此外,棘突动力学的损伤会导致精神和神经发育障碍。
Trends Neurosci. 2010-3
Brain Cogn. 2012-4-17
Prog Brain Res. 2008
Neuroscience. 2007-3-16
Eur J Neurosci. 2010-7-14
Front Neural Circuits. 2017-6-19
Annu Rev Neurosci. 2007
J Cell Sci. 2007-1-15
Am J Med Genet B Neuropsychiatr Genet. 2025-6-18
Cells. 2025-1-21