Suppr超能文献

平面透镜集成的毛细管作用微流控免疫分析装置,用于肌钙蛋白 I 的光学检测。

Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I.

机构信息

Heriot-Watt University, MicroSystems Engineering Centre (MISEC), School of Engineering & Physical Sciences, Earl Mountbatten Building, Edinburgh EH14 4AS, Scotland.

出版信息

Biomicrofluidics. 2013 Dec 5;7(6):64112. doi: 10.1063/1.4837755. eCollection 2013.

Abstract

Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care.

摘要

基于光学的分析方法在微流控和芯片实验室系统中被认为是确定各种化学和生物反应过程终点反应的金标准方法。通常,使用体积庞大的辅助设备(如显微镜和复杂的光学激发和检测系统)来进行分析。这种仪器否定了设备小型化带来的许多优势,尤其是在整体便携性方面。在本文中,我们提出了一种 CO2 激光烧蚀技术,用于快速原型制作芯片上的平面透镜,并结合基于毛细作用的自主微流控技术,创建一个小型化和完全集成的光学生物传感平台。所提出的自对准芯片光学元件提供了一种有效的方法,可以在微流体内引导激发光,并直接耦合来自 LED 源的光。该器件与微型化和定制的荧光检测平台结合使用,创建了一个完整的、手掌大小的系统(≈60×80×60mm),能够进行荧光免疫分析。该系统已应用于心肌肌钙蛋白 I 的检测,心肌肌钙蛋白 I 是诊断急性心肌梗死的金标准生物标志物之一,检测限达到 0.08ng/ml,达到了临床应用浓度的阈值。该完整系统的便携性和生物标志物检测能力证明了所设计仪器在即时医疗诊断设备中的应用潜力。

相似文献

1
Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I.
Biomicrofluidics. 2013 Dec 5;7(6):64112. doi: 10.1063/1.4837755. eCollection 2013.
2
Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection.
Biosens Bioelectron. 2014 Nov 15;61:478-84. doi: 10.1016/j.bios.2014.05.042. Epub 2014 Jun 3.
4
Integrated optical detection of autonomous capillary microfluidic immunoassays:a hand-held point-of-care prototype.
Biosens Bioelectron. 2014 Jul 15;57:284-91. doi: 10.1016/j.bios.2014.02.009. Epub 2014 Feb 18.
5
An integrated microfluidic platform for sensitive and rapid detection of biological toxins.
Lab Chip. 2008 Dec;8(12):2046-53. doi: 10.1039/b815152k. Epub 2008 Oct 24.
6
Advantages of optical fibers for facile and enhanced detection in droplet microfluidics.
Biosens Bioelectron. 2022 Mar 15;200:113910. doi: 10.1016/j.bios.2021.113910. Epub 2021 Dec 23.
9
High-resolution cost-effective compact portable inverted light microscope.
J Microsc. 2019 Mar;273(3):199-209. doi: 10.1111/jmi.12775. Epub 2018 Dec 17.
10
Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device.
Biosens Bioelectron. 2015 Aug 15;70:5-14. doi: 10.1016/j.bios.2015.03.006. Epub 2015 Mar 5.

引用本文的文献

3
Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications.
Biomicrofluidics. 2014 Sep 30;8(5):054111. doi: 10.1063/1.4897226. eCollection 2014 Sep.

本文引用的文献

1
Scattering detection using a photonic-microfluidic integrated device with on-chip collection capabilities.
Electrophoresis. 2014 Feb;35(2-3):271-81. doi: 10.1002/elps.201300195. Epub 2013 Oct 7.
3
How to interpret elevated cardiac troponin levels.
Circulation. 2011 Nov 22;124(21):2350-4. doi: 10.1161/CIRCULATIONAHA.111.023697.
4
A miniaturised integrated biophotonic point-of-care genotyping system.
Faraday Discuss. 2011;149:115-23; discussion 137-57. doi: 10.1039/c005271j.
5
Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review.
Lab Chip. 2011 Feb 21;11(4):569-95. doi: 10.1039/c0lc00204f. Epub 2010 Dec 23.
6
Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
Lab Chip. 2009 Dec 7;9(23):3330-7. doi: 10.1039/b906523g. Epub 2009 Aug 21.
7
Cardiac biomarkers and the case for point-of-care testing.
Clin Biochem. 2009 May;42(7-8):549-61. doi: 10.1016/j.clinbiochem.2009.01.019. Epub 2009 Feb 7.
8
Innovations in optical microfluidic technologies for point-of-care diagnostics.
Lab Chip. 2008 Dec;8(12):2015-31. doi: 10.1039/b812343h. Epub 2008 Oct 30.
10
Optical sensing systems for microfluidic devices: a review.
Anal Chim Acta. 2007 Oct 10;601(2):141-55. doi: 10.1016/j.aca.2007.08.046. Epub 2007 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验