From the Cardiovascular Institute, Hospital Clínico San Carlos and Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (M.E.-P., B.I., A.Q., A.F.-O., J.E.); Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Spain (N.G., P.J.-Q., F.A., I.J.N.-G., C.B., C.M.); International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London and Imperial College Healthcare NHS Trust, London, United Kingdom (R.P., S.S., S.N., J.T., J.D.); and Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea (B.K.K.).
Circ Cardiovasc Interv. 2014 Feb;7(1):35-42. doi: 10.1161/CIRCINTERVENTIONS.113.000659. Epub 2014 Jan 7.
Intravenous adenosine infusion produces coronary and systemic vasodilatation, generally leading to systemic hypotension. However, adenosine-induced hypotension during stable hyperemia is heterogeneous, and its relevance to coronary stenoses assessment with fractional flow reserve (FFR) remains largely unknown.
FFR, coronary flow reserve, and index of microcirculatory resistance were measured in 93 stenosed arteries (79 patients). Clinical and intracoronary measurements were analyzed among tertiles of the percentage degree of adenosine-induced hypotension, defined as follows: %ΔP(a)=-[100-(hyperemic aortic pressure×100/baseline aortic pressure)]. Overall, %ΔP(a) was -13.6±12.0%. Body mass index was associated with %ΔP(a) (r=0.258; P=0.025) and obesity, an independent predictor of profound adenosine-induced hypotension (tertile 3 of %ΔP(a); odds ratio, 3.95 [95% confidence interval, 1.48-10.54]; P=0.006). %ΔP(a) was associated with index of microcirculatory resistance (ρ=0.311; P=0.002), coronary flow reserve (r=-0.246; P=0.017), and marginally with FFR (r=0.203; P=0.051). However, index of microcirculatory resistance (β=0.003; P<0.001) and not %ΔP(a) (β=-0.001; P=0.564) was a predictor of FFR. Compared with tertiles 1 and 2 of %ΔP(a) (n=62 [66.6%]), stenoses assessed during profound adenosine-induced hypotension (n=31 [33.3%]) had lower index of microcirculatory resistance (12.4 [8.6-22.7] versus 20 [15.8-35.5]; P=0.001) and FFR values (0.77±0.13 versus 0.83±0.12; P=0.021), as well as a nonsignificant increase in coronary flow reserve (2.5±1.1 versus 2.2±0.87; P=0.170).
The modification of systemic blood pressure during intravenous adenosine infusion is related to hyperemic microcirculatory resistance in the heart. Profound adenosine-induced hypotension is associated with obesity, lower coronary microcirculatory resistance, and lower FFR values.
静脉内腺苷输注可导致冠状动脉和全身血管舒张,通常导致全身低血压。然而,在稳定的充血期间,腺苷引起的低血压是不均匀的,其与使用血流储备分数(FFR)评估冠状动脉狭窄的相关性在很大程度上仍不清楚。
在 93 个狭窄动脉(79 例患者)中测量了 FFR、冠状动脉血流储备和微血管阻力指数。在腺苷诱导的低血压程度的三分位数(定义为:%ΔP(a)=-[100-(充血性主动脉压×100/基础主动脉压)])中分析了临床和冠状动脉内测量值。总体而言,%ΔP(a)为-13.6±12.0%。体重指数与%ΔP(a)相关(r=0.258;P=0.025),肥胖是腺苷诱导性低血压严重程度的独立预测因子(%ΔP(a)的第三分位数;比值比,3.95[95%置信区间,1.48-10.54];P=0.006)。%ΔP(a)与微血管阻力指数(ρ=0.311;P=0.002)、冠状动脉血流储备(r=-0.246;P=0.017)相关,与 FFR 相关但边缘显著(r=0.203;P=0.051)。然而,微血管阻力指数(β=0.003;P<0.001)而不是%ΔP(a)(β=-0.001;P=0.564)是 FFR 的预测因子。与%ΔP(a)的第一和第二三分位数(n=62[66.6%])相比,在严重腺苷诱导性低血压期间评估的狭窄病变(n=31[33.3%])的微血管阻力指数(12.4[8.6-22.7]与 20[15.8-35.5];P=0.001)和 FFR 值(0.77±0.13 与 0.83±0.12;P=0.021)更低,冠状动脉血流储备(2.5±1.1 与 2.2±0.87;P=0.170)略有增加。
静脉内腺苷输注期间全身血压的改变与心脏的充血性微循环阻力有关。严重的腺苷诱导性低血压与肥胖、较低的冠状动脉微循环阻力和较低的 FFR 值相关。