Lourenço Anabel S, Sanches Fátima A C, Magalhães Renata R, Costa Daniel J E, Ribeiro Williame F, Bichinho Kátia M, Salazar-Banda Giancarlo R, Araújo Mário C U
Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Química, P.O. Box 5093, 58051-970 João Pessoa, PB, Brazil.
Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Química, P.O. Box 5093, 58051-970 João Pessoa, PB, Brazil; Universidade Federal da Paraíba, Centro de Ciências Agrárias, Departamento de Ciências Fundamentais e Sociais, 58397-000 Areia, PB, Brazil.
Talanta. 2014 Feb;119:509-16. doi: 10.1016/j.talanta.2013.11.030. Epub 2013 Nov 27.
Xylitol is a reduced sugar with anticariogenic properties used by insulin-dependent diabetics, and which has attracted great attention of the pharmaceutical, cosmetics, food and dental industries. The detection of xylitol in different matrices is generally based on separation techniques. Alternatively, in this paper, the application of a boron-doped diamond (BDD) electrode allied to differing voltammetric techniques is presented to study the electrochemical behavior of xylitol, and to develop an analytical methodology for its determination in mouthwash. Xylitol undergoes two oxidation steps in an irreversible diffusion-controlled process (D=5.05 × 10(-5)cm(2)s(-1)). Differential pulse voltammetry studies revealed that the oxidation mechanism for peaks P1 (3.4 ≤ pH ≤ 8.0), and P2 (6.0 ≤ pH ≤ 9.0) involves transfer of 1H(+)/1e(-), and 1e(-) alone, respectively. The oxidation process P1 is mediated by the (•)OH generated at the BDD hydrogen-terminated surface. The maximum peak current was obtained at a pH of 7.0, and the electroanalytical method developed, (employing square wave voltammetry) yielded low detection (1.3 × 10(-6) mol L(-1)), and quantification (4.5 × 10(-6) mol L(-1)) limits, associated with good levels of repeatability (4.7%), and reproducibility (5.3%); thus demonstrating the viability of the methodology for detection of xylitol in biological samples containing low concentrations.
木糖醇是一种具有防龋特性的还原糖,可供胰岛素依赖型糖尿病患者使用,并且已经引起了制药、化妆品、食品和牙科行业的高度关注。在不同基质中检测木糖醇通常基于分离技术。另外,本文介绍了将硼掺杂金刚石(BDD)电极与不同伏安技术相结合的应用,以研究木糖醇的电化学行为,并开发一种用于测定漱口水中木糖醇的分析方法。木糖醇在不可逆扩散控制过程(D = 5.05×10(-5)cm(2)s(-1))中经历两个氧化步骤。差分脉冲伏安法研究表明,峰P1(3.4≤pH≤8.0)和峰P2(6.0≤pH≤9.0)的氧化机制分别涉及1H(+)/1e(-)转移和仅1e(-)转移。氧化过程P1由BDD氢端表面产生的(•)OH介导。在pH为7.0时获得最大峰电流,所开发的电分析方法(采用方波伏安法)具有低检测限(1.3×10(-6) mol L(-1))和定量限(4.5×10(-6) mol L(-1)),具有良好的重复性(4.7%)和再现性(5.3%);从而证明了该方法在检测低浓度生物样品中木糖醇的可行性。