Suppr超能文献

化学计量学辅助同时伏安法测定抗坏血酸、尿酸、多巴胺和亚硝酸盐:利用非双线性伏安数据发挥一阶优势的应用

Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.

作者信息

Gholivand Mohammad-Bagher, Jalalvand Ali R, Goicoechea Hector C, Skov Thomas

机构信息

Faculty of Chemistry, Razi University, Kermanshah 671496734, Iran.

Faculty of Chemistry, Razi University, Kermanshah 671496734, Iran; Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA Santa Fe, Argentina.

出版信息

Talanta. 2014 Feb;119:553-63. doi: 10.1016/j.talanta.2013.11.028. Epub 2013 Nov 27.

Abstract

For the first time, several multivariate calibration (MVC) models including partial least squares-1 (PLS-1), continuum power regression (CPR), multiple linear regression-successive projections algorithm (MLR-SPA), robust continuum regression (RCR), partial robust M-regression (PRM), polynomial-PLS (PLY-PLS), spline-PLS (SPL-PLS), radial basis function-PLS (RBF-PLS), least squares-support vector machines (LS-SVM), wavelet transform-artificial neural network (WT-ANN), discrete wavelet transform-ANN (DWT-ANN), and back propagation-ANN (BP-ANN) have been constructed on the basis of non-bilinear first order square wave voltammetric (SWV) data for the simultaneous determination of ascorbic acid (AA), uric acid (UA), dopamine (DP) and nitrite (NT) at a glassy carbon electrode (GCE) to identify which technique offers the best predictions. The compositions of the calibration mixtures were selected according to a simplex lattice design (SLD) and validated with an external set of analytes' mixtures. An asymmetric least squares splines regression (AsLSSR) algorithm was applied for correcting the baselines. A correlation optimized warping (COW) algorithm was used to data alignment and lack of bilinearity was tackled by potential shift correction. The effects of several pre-processing techniques such as genetic algorithm (GA), orthogonal signal correction (OSC), mean centering (MC), robust median centering (RMC), wavelet denoising (WD), and Savitsky-Golay smoothing (SGS) on the predictive ability of the mentioned MVC models were examined. The best preprocessing technique was found for each model. According to the results obtained, the RBF-PLS was recommended to simultaneously assay the concentrations of AA, UA, DP and NT in human serum samples.

摘要

首次基于非双线性一阶方波伏安法(SWV)数据构建了几种多元校准(MVC)模型,包括偏最小二乘法-1(PLS-1)、连续功率回归(CPR)、多元线性回归-逐次投影算法(MLR-SPA)、稳健连续回归(RCR)、偏稳健M回归(PRM)、多项式-PLS(PLY-PLS)、样条-PLS(SPL-PLS)、径向基函数-PLS(RBF-PLS)、最小二乘支持向量机(LS-SVM)、小波变换-人工神经网络(WT-ANN)、离散小波变换-人工神经网络(DWT-ANN)和反向传播-人工神经网络(BP-ANN),用于在玻碳电极(GCE)上同时测定抗坏血酸(AA)、尿酸(UA)、多巴胺(DP)和亚硝酸盐(NT),以确定哪种技术提供最佳预测。校准混合物的组成根据单纯形格子设计(SLD)进行选择,并用一组外部分析物混合物进行验证。应用非对称最小二乘样条回归(AsLSSR)算法校正基线。使用相关优化翘曲(COW)算法进行数据对齐,并通过电位偏移校正解决缺乏双线性的问题。研究了遗传算法(GA)、正交信号校正(OSC)、均值中心化(MC)、稳健中位数中心化(RMC)、小波去噪(WD)和Savitsky-Golay平滑(SGS)等几种预处理技术对上述MVC模型预测能力的影响。为每个模型找到了最佳预处理技术。根据所得结果,推荐使用RBF-PLS同时测定人血清样品中AA、UA、DP和NT的浓度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验