Suppr超能文献

SNARE复合体强制展开途径的全原子和粗粒度模拟。

All-atom and coarse-grained simulations of the forced unfolding pathways of the SNARE complex.

作者信息

Zheng Wenjun

机构信息

Department of Physics, University at Buffalo, State University of New York, New York.

出版信息

Proteins. 2014 Jul;82(7):1376-86. doi: 10.1002/prot.24505. Epub 2014 Feb 6.

Abstract

The SNARE complex, consisting of three proteins (VAMP2, syntaxin, and SNAP-25), is thought to drive membrane fusion by assembling into a four-helix bundle through a zippering process. In support of the above zippering model, a recent single-molecule optical tweezers experiment by Gao et al. revealed a sequential unzipping of SNARE along VAMP2 in the order of the linker domain → the C-terminal domain → the N-terminal domain. To offer detailed structural insights to this unzipping process, we have performed all-atom and coarse-grained steered molecular dynamics (sMD) simulations of the forced unfolding pathways of SNARE using different models and force fields. Our findings are summarized as follows: First, the sMD simulations based on either an all-atom force field (with an implicit solvent model) or a coarse-grained Go model were unable to capture the forced unfolding pathway of SNARE as observed by Gao et al., which may be attributed to insufficient simulation time and inaccurate force fields. Second, the sMD simulations based on a reparameterized coarse-grained model (i.e., modified elastic network model) were able to predict a sequential unzipping of SNARE in good agreement with the findings by Gao et al. The key to this success is to reparameterize the intrahelix and interhelix nonbonded force constants against the pair-wise residue-residue distance fluctuations collected from all-atom MD simulations of SNARE. Therefore, our finding supports the importance of accurately describing the inherent dynamics/flexibility of SNARE (in the absence of force), in order to correctly simulate its unfolding behaviors under force. This study has established a useful computational framework for future studies of the zippering function of SNARE and its perturbations by point mutations with amino-acid level of details, and more generally the forced unfolding pathways of other helix bundle proteins.

摘要

SNARE复合体由三种蛋白质(VAMP2、 Syntaxin和SNAP - 25)组成,被认为通过拉链式过程组装成四螺旋束来驱动膜融合。为支持上述拉链式模型,Gao等人最近进行的单分子光镊实验揭示了SNARE沿着VAMP2按接头结构域→C末端结构域→N末端结构域的顺序依次解拉链。为了详细了解这一解拉链过程的结构,我们使用不同模型和力场对SNARE的强制展开途径进行了全原子和粗粒度的引导分子动力学(sMD)模拟。我们的发现总结如下:首先,基于全原子力场(带有隐式溶剂模型)或粗粒度Go模型的sMD模拟无法捕捉到Gao等人观察到的SNARE的强制展开途径,这可能归因于模拟时间不足和力场不准确。其次,基于重新参数化的粗粒度模型(即改进的弹性网络模型)的sMD模拟能够预测SNARE的依次解拉链,与Gao等人的发现高度一致。成功的关键在于根据从SNARE的全原子分子动力学模拟收集的成对残基 - 残基距离波动,重新参数化螺旋内和螺旋间的非键合力常数。因此,我们的发现支持了准确描述SNARE在无外力情况下的固有动力学/柔韧性的重要性,以便正确模拟其在外力作用下的展开行为。本研究为未来研究SNARE的拉链功能及其点突变在氨基酸水平上的扰动,以及更普遍地研究其他螺旋束蛋白的强制展开途径建立了一个有用的计算框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验