Suppr超能文献

基于显式形状约束的马尔可夫随机场轮廓演化方法用于 2D 医学图像分割。

An explicit shape-constrained MRF-based contour evolution method for 2-D medical image segmentation.

出版信息

IEEE J Biomed Health Inform. 2014 Jan;18(1):120-9. doi: 10.1109/JBHI.2013.2257820.

Abstract

Image segmentation is, in general, an ill-posed problem and additional constraints need to be imposed in order to achieve the desired segmentation result. While segmenting organs in medical images, which is the topic of this paper, a significant amount of prior knowledge about the shape, appearance, and location of the organs is available that can be used to constrain the solution space of the segmentation problem. Among the various types of prior information, the incorporation of prior information about shape, in particular, is very challenging. In this paper, we present an explicit shape-constrained MAP-MRF-based contour evolution method for the segmentation of organs in 2-D medical images. Specifically, we represent the segmentation contour explicitly as a chain of control points. We then cast the segmentation problem as a contour evolution problem, wherein the evolution of the contour is performed by iteratively solving a MAP-MRF labeling problem. The evolution of the contour is governed by three types of prior information, namely: (i) appearance prior, (ii) boundary-edgeness prior, and (iii) shape prior, each of which is incorporated as clique potentials into the MAP-MRF problem. We use the master-slave dual decomposition framework to solve the MAP-MRF labeling problem in each iteration. In our experiments, we demonstrate the application of the proposed method to the challenging problem of heart segmentation in non-contrast computed tomography data.

摘要

图像分割通常是一个不适定问题,需要施加额外的约束条件才能得到期望的分割结果。在对医学图像中的器官进行分割时,有大量关于器官形状、外观和位置的先验知识可用于约束分割问题的解空间。在各种类型的先验信息中,引入形状先验信息特别具有挑战性。在本文中,我们提出了一种基于显式形状约束的 MAP-MRF 轮廓演化方法,用于分割二维医学图像中的器官。具体来说,我们将分割轮廓显式表示为控制点链。然后,我们将分割问题表示为轮廓演化问题,其中轮廓的演化是通过迭代求解 MAP-MRF 标记问题来实现的。轮廓的演化受三种类型的先验信息的控制,分别是:(i)外观先验、(ii)边界边缘先验和 (iii)形状先验,这三种先验信息都被作为团块势纳入到 MAP-MRF 问题中。我们使用主从对偶分解框架来解决每次迭代中的 MAP-MRF 标记问题。在实验中,我们展示了该方法在非对比 CT 数据中心脏分割这一具有挑战性问题上的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验