Suppr超能文献

基于替代研究的具有新型正则化复合形状先验的图像分割

Image segmentation with a novel regularized composite shape prior based on surrogate study.

作者信息

Zhao Tingting, Ruan Dan

机构信息

The Department of Radiation Oncology, University of California, Los Angeles, California 90095.

出版信息

Med Phys. 2016 May;43(5):2187. doi: 10.1118/1.4945046.

Abstract

PURPOSE

Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum.

METHODS

In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulated in a unified optimization setting and a variational block-descent algorithm is derived.

RESULTS

The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes.

CONCLUSIONS

This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.

摘要

目的

将训练融入图像分割是实现额外鲁棒性的一种好方法。这项工作旨在开发一种有效的策略来利用形状先验知识,以便分割标签的演变能够朝着期望的全局最优解推进。

方法

在变分图像分割框架中,设计了一种针对复合形状先验的正则化方法,以纳入各个训练数据与目标之间的几何相关性,该相关性由基于图像的替代相关性度量来推断。具体而言,这种正则化施加于复合形状的线性权重上,并作为一种超先验。整体问题在统一的优化设置中进行表述,并推导了一种变分块下降算法。

结果

所提出方案的性能在从一组磁共振图像进行胼胝体分割以及基于计算机断层扫描图像进行锁骨分割中均得到评估。所得到的形状组合为几何相关的训练数据提供了适当的偏好。与多图谱标签融合方法及其他三种基准主动轮廓方案相比,配对威尔科克森符号秩检验表明图像分割准确性有统计学上的显著提高。

结论

这项工作开发了一种新颖的复合形状先验正则化方法,其分割性能优于典型的基准方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验