Suppr超能文献

基于压缩采样的无线体域网定位。

Compressive-sampling-based positioning in wireless body area networks.

出版信息

IEEE J Biomed Health Inform. 2014 Jan;18(1):335-44. doi: 10.1109/JBHI.2013.2261997.

Abstract

Recent achievements in wireless technologies have opened up enormous opportunities for the implementation of ubiquitous health care systems in providing rich contextual information and warning mechanisms against abnormal conditions. This helps with the automatic and remote monitoring/tracking of patients in hospitals and facilitates and with the supervision of fragile, elderly people in their own domestic environment through automatic systems to handle the remote drug delivery. This paper presents a new modeling and analysis framework for the multipatient positioning in a wireless body area network (WBAN) which exploits the spatial sparsity of patients and a sparse fast Fourier transform (FFT)-based feature extraction mechanism for monitoring of patients and for reporting the movement tracking to a central database server containing patient vital information. The main goal of this paper is to achieve a high degree of accuracy and resolution in the patient localization with less computational complexity in the implementation using the compressive sensing theory. We represent the patients' positions as a sparse vector obtained by the discrete segmentation of the patient movement space in a circular grid. To estimate this vector, a compressive-sampling-based two-level FFT (CS-2FFT) feature vector is synthesized for each received signal from the biosensors embedded on the patient's body at each grid point. This feature extraction process benefits in the combination of both short-time and long-time properties of the received signals. The robustness of the proposed CS-2FFT-based algorithm in terms of the average positioning error is numerically evaluated using the realistic parameters in the IEEE 802.15.6-WBAN standard in the presence of additive white Gaussian noise. Due to the circular grid pattern and the CS-2FFT feature extraction method, the proposed scheme represents a significant reduction in the computational complexity, while improving the level of the resolution and the localization accuracy when compared to some classical CS-based positioning algorithms.

摘要

近年来,无线技术的最新成果为实现无处不在的医疗保健系统提供了巨大的机会,该系统可以提供丰富的上下文信息和异常情况警告机制。这有助于在医院中对患者进行自动和远程监控/跟踪,并通过自动系统为脆弱的老年人提供便利,以在其自己的家庭环境中进行监督,从而实现远程药物输送。本文提出了一种新的建模和分析框架,用于在无线体域网(WBAN)中对多患者进行定位,该框架利用了患者的空间稀疏性和基于稀疏快速傅里叶变换(FFT)的特征提取机制,用于监测患者并将运动跟踪报告给包含患者重要信息的中央数据库服务器。本文的主要目标是利用压缩感知理论在实现中实现高精度和高分辨率的患者定位,同时降低计算复杂度。我们将患者的位置表示为通过离散分割患者运动空间得到的稀疏向量在圆形网格中。为了估计这个向量,我们为从患者身体上嵌入的生物传感器在每个网格点接收到的每个信号合成一个基于压缩采样的两级 FFT(CS-2FFT)特征向量。这个特征提取过程受益于接收信号的短时间和长时间特性的结合。在存在加性白高斯噪声的情况下,使用 IEEE 802.15.6-WBAN 标准中的实际参数对基于 CS-2FFT 的算法的平均定位误差进行了数值评估。由于圆形网格模式和 CS-2FFT 特征提取方法,与一些基于 CS 的经典定位算法相比,所提出的方案在降低计算复杂度的同时,提高了分辨率和定位精度水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验