Suppr超能文献

介电泳在通过微流控系统对血液中的肿瘤细胞进行无标记分离方面具有广泛的适用性。

Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems.

机构信息

Department of Imaging Physics Research, The University of Texas, M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, Texas 77030, USA ; Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, Texas 78712, USA.

Department of Systems Biology, The University of Texas, M.D. Anderson Cancer Center Unit 951, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

出版信息

Biomicrofluidics. 2013 Jan 16;7(1):11808. doi: 10.1063/1.4774307. eCollection 2013.

Abstract

The number of circulating tumor cells (CTCs) found in blood is known to be a prognostic marker for recurrence of primary tumors, however, most current methods for isolating CTCs rely on cell surface markers that are not universally expressed by CTCs. Dielectrophoresis (DEP) can discriminate and manipulate cancer cells in microfluidic systems and has been proposed as a molecular marker-independent approach for isolating CTCs from blood. To investigate the potential applicability of DEP to different cancer types, the dielectric and density properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic field-flow fractionation (DEP-FFF) and compared with like properties of the subpopulations of normal peripheral blood cells. We show that all of the NCI-60 cell types, regardless of tissue of origin, exhibit dielectric properties that facilitate their isolation from blood by DEP. Cell types derived from solid tumors that grew in adherent cultures exhibited dielectric properties that were strikingly different from those of peripheral blood cell subpopulations while leukemia-derived lines that grew in non-adherent cultures exhibited dielectric properties that were closer to those of peripheral blood cell types. Our results suggest that DEP methods have wide applicability for the surface-marker independent isolation of viable CTCs from blood as well as for the concentration of leukemia cells from blood.

摘要

血液中循环肿瘤细胞 (CTC) 的数量已知是原发性肿瘤复发的预后标志物,然而,目前大多数分离 CTC 的方法都依赖于并非普遍表达于 CTC 上的细胞表面标志物。介电泳 (DEP) 可在微流控系统中区分和操纵癌细胞,并已被提议作为一种与分子标志物无关的方法,从血液中分离 CTC。为了研究 DEP 对不同癌症类型的潜在适用性,通过介电泳场流分级 (DEP-FFF) 测量了 NCI-60 肿瘤细胞类型面板的介电和密度特性,并将其与正常外周血细胞亚群的类似特性进行了比较。我们表明,所有 NCI-60 细胞类型,无论其起源组织如何,都表现出有助于通过 DEP 从血液中分离的介电特性。在贴壁培养中生长的源自实体瘤的细胞类型表现出与外周血细胞亚群明显不同的介电特性,而在非贴壁培养中生长的白血病衍生系则表现出与外周血细胞类型更接近的介电特性。我们的结果表明,DEP 方法具有广泛的适用性,可用于从血液中分离表面标志物独立的存活 CTC,以及从血液中浓缩白血病细胞。

相似文献

1
Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems.
Biomicrofluidics. 2013 Jan 16;7(1):11808. doi: 10.1063/1.4774307. eCollection 2013.
2
Isolation of circulating tumor cells by dielectrophoresis.
Cancers (Basel). 2014 Mar 12;6(1):545-79. doi: 10.3390/cancers6010545.
4
Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis.
Biomicrofluidics. 2013 Jan 16;7(1):11807. doi: 10.1063/1.4774304. eCollection 2013.
5
Examination of the dielectrophoretic spectra of MCF7 breast cancer cells and leukocytes.
Electrophoresis. 2020 Mar;41(5-6):345-352. doi: 10.1002/elps.201900374. Epub 2020 Jan 22.
6
Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells.
Electrophoresis. 2019 May;40(10):1457-1477. doi: 10.1002/elps.201800446. Epub 2019 Jan 31.
8
On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells.
Electrophoresis. 2019 May;40(10):1486-1493. doi: 10.1002/elps.201800459. Epub 2019 Feb 25.

引用本文的文献

2
Microfluidics engineering towards personalized oncology-a review.
In Vitro Model. 2023 Jul 13;2(3-4):69-81. doi: 10.1007/s44164-023-00054-z. eCollection 2023 Aug.
3
Compensation of capacitive currents in high-throughput dielectrophoretic separators.
Sci Rep. 2024 Jul 17;14(1):16491. doi: 10.1038/s41598-024-67030-9.
4
Biomechanics of circulating cellular and subcellular bioparticles: beyond separation.
Cell Commun Signal. 2024 Jun 17;22(1):331. doi: 10.1186/s12964-024-01707-6.
8
Detection of circulating tumor cells: opportunities and challenges.
Biomark Res. 2022 Aug 13;10(1):58. doi: 10.1186/s40364-022-00403-2.
9
Sub-100 nm Nanoparticle Upconcentration in Flow by Dielectrophoretic Forces.
Micromachines (Basel). 2022 May 30;13(6):866. doi: 10.3390/mi13060866.

本文引用的文献

1
Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis.
Biomicrofluidics. 2013 Jan 16;7(1):11807. doi: 10.1063/1.4774304. eCollection 2013.
4
Clinical relevance and biology of circulating tumor cells.
Breast Cancer Res. 2011;13(6):228. doi: 10.1186/bcr2940. Epub 2011 Nov 1.
5
Efficacy control of therapy using circulating epithelial tumor cells (CETC) as "liquid biopsy": trastuzumab in HER2/neu-positive breast carcinoma.
J Cancer Res Clin Oncol. 2011 Sep;137(9):1317-27. doi: 10.1007/s00432-011-1000-6. Epub 2011 Jul 8.
6
Dynamic physical properties of dissociated tumor cells revealed by dielectrophoretic field-flow fractionation.
Integr Biol (Camb). 2011 Aug;3(8):850-62. doi: 10.1039/c1ib00032b. Epub 2011 Jun 21.
7
Isolation of circulating tumor cells in patients with hepatocellular carcinoma using a novel cell separation strategy.
Clin Cancer Res. 2011 Jun 1;17(11):3783-93. doi: 10.1158/1078-0432.CCR-10-0498. Epub 2011 Apr 28.
8
Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients.
Breast Cancer Res Treat. 2011 Nov;130(2):449-55. doi: 10.1007/s10549-011-1373-x. Epub 2011 Feb 5.
10
Global microRNA analysis of the NCI-60 cancer cell panel.
Mol Cancer Ther. 2011 Mar;10(3):375-84. doi: 10.1158/1535-7163.MCT-10-0605. Epub 2011 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验