Suppr超能文献

利用介电泳对微流控剪切依赖性上皮细胞黏附分子免疫捕获和从血细胞中富集胰腺癌细胞的特性研究。

Characterization of microfluidic shear-dependent epithelial cell adhesion molecule immunocapture and enrichment of pancreatic cancer cells from blood cells with dielectrophoresis.

机构信息

Department of Biomedical Engineering, Cornell University , Ithaca, New York 14853, USA.

Sibley School of Mechanical and Aerospace Engineering, Cornell University , Ithaca, New York 14853, USA.

出版信息

Biomicrofluidics. 2014 Jul 21;8(4):044107. doi: 10.1063/1.4890466. eCollection 2014 Jul.

Abstract

Current microfluidic techniques for isolating circulating tumor cells (CTCs) from cancer patient blood are limited by low capture purity, and dielectrophoresis (DEP) has the potential to complement existing immunocapture techniques to improve capture performance. We present a hybrid DEP and immunocapture Hele-Shaw flow cell to characterize DEP's effects on immunocapture of pancreatic cancer cells (Capan-1, PANC-1, and BxPC-3) and peripheral blood mononuclear cells (PBMCs) with an anti-EpCAM (epithelial cell adhesion molecule) antibody. By carefully specifying the applied electric field frequency, we demonstrate that pancreatic cancer cells are attracted to immunocapture surfaces by positive DEP whereas PBMCs are repelled by negative DEP. Using an exponential capture model to interpret our capture data, we show that immunocapture performance is dependent on the applied DEP force sign and magnitude, cell surface EpCAM expression level, and shear stress experienced by cells flowing in the capture device. Our work suggests that DEP can not only repel contaminating blood cells but also enhance capture of cancer cell populations that are less likely to be captured by traditional immunocapture methods. This combination of DEP and immunocapture techniques to potentially increase CTC capture purity can facilitate subsequent biological analyses of captured CTCs and research on cancer metastasis and drug therapies.

摘要

当前从癌症患者血液中分离循环肿瘤细胞 (CTC) 的微流控技术受到低捕获纯度的限制,而电泳(DEP)有可能补充现有的免疫捕获技术,以提高捕获性能。我们提出了一种混合 DEP 和免疫捕获的 Hele-Shaw 流控芯片,用于表征 DEP 对用抗 EpCAM(上皮细胞黏附分子)抗体进行免疫捕获的胰腺癌细胞(Capan-1、PANC-1 和 BxPC-3)和外周血单核细胞(PBMCs)的影响。通过仔细指定施加的电场频率,我们证明胰腺癌细胞通过正 DEP 被吸引到免疫捕获表面,而 PBMCs 则被负 DEP 排斥。我们使用指数捕获模型来解释我们的捕获数据,结果表明免疫捕获性能取决于施加的 DEP 力的符号和大小、细胞表面 EpCAM 的表达水平以及在捕获装置中流动的细胞所经历的剪切应力。我们的工作表明,DEP 不仅可以排斥污染的血细胞,还可以增强对传统免疫捕获方法不太可能捕获的癌细胞群体的捕获。DEP 和免疫捕获技术的这种组合有可能提高 CTC 的捕获纯度,从而促进对捕获的 CTC 进行后续的生物学分析以及对癌症转移和药物治疗的研究。

相似文献

3
Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
Electrophoresis. 2013 Nov;34(20-21):2970-9. doi: 10.1002/elps.201300242. Epub 2013 Oct 9.
4
Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.
Biomicrofluidics. 2015 Feb 10;9(1):014116. doi: 10.1063/1.4908049. eCollection 2015 Jan.
9
EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
Oncol Rep. 2017 Jan;37(1):77-82. doi: 10.3892/or.2016.5235. Epub 2016 Nov 8.
10
Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells.
Biosens Bioelectron. 2018 Mar 15;101:311-316. doi: 10.1016/j.bios.2017.10.036. Epub 2017 Oct 17.

引用本文的文献

2
Blood Particle Separation Using Dielectrophoresis in A Novel Microchannel: A Numerical Study.
Cell J. 2020 Jul;22(2):218-226. doi: 10.22074/cellj.2020.6386. Epub 2019 Oct 14.
3
Enrichment and single-cell analysis of circulating tumor cells.
Chem Sci. 2017 Mar 1;8(3):1736-1751. doi: 10.1039/c6sc04671a. Epub 2016 Dec 7.
5
Emerging microfluidic devices for cancer cells/biomarkers manipulation and detection.
IET Nanobiotechnol. 2016 Oct;10(5):263-275. doi: 10.1049/iet-nbt.2015.0060.
6
Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis.
Biomicrofluidics. 2016 Apr 4;10(2):024117. doi: 10.1063/1.4945309. eCollection 2016 Mar.
7
Microfluidic platform for separation and extraction of plasma from whole blood using dielectrophoresis.
Biomicrofluidics. 2015 Dec 29;9(6):064120. doi: 10.1063/1.4938391. eCollection 2015 Nov.
8
A universal tumor cell isolation method enabled by fibrin-coated microchannels.
Analyst. 2016 Jan 21;141(2):563-6. doi: 10.1039/c5an01783a.
9
Microfluidic Sample Preparation for Single Cell Analysis.
Anal Chem. 2016 Jan 5;88(1):354-80. doi: 10.1021/acs.analchem.5b04077. Epub 2015 Dec 3.
10
A hybrid dielectrophoretic system for trapping of microorganisms from water.
Biomicrofluidics. 2015 Jun 15;9(3):034110. doi: 10.1063/1.4922276. eCollection 2015 May.

本文引用的文献

2
Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells.
Biomicrofluidics. 2013 Jan 23;7(1):11809. doi: 10.1063/1.4788921. eCollection 2013.
3
Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems.
Biomicrofluidics. 2013 Jan 16;7(1):11808. doi: 10.1063/1.4774307. eCollection 2013.
4
Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions.
Gastroenterology. 2014 Mar;146(3):647-51. doi: 10.1053/j.gastro.2013.12.007. Epub 2013 Dec 13.
5
Transport and collision dynamics in periodic asymmetric obstacle arrays: rational design of microfluidic rare-cell immunocapture devices.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032136. doi: 10.1103/PhysRevE.88.032136. Epub 2013 Sep 26.
7
Characterization of a hybrid dielectrophoresis and immunocapture microfluidic system for cancer cell capture.
Electrophoresis. 2013 Nov;34(20-21):2970-9. doi: 10.1002/elps.201300242. Epub 2013 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验