Suppr超能文献

在流聚焦模块中以数百千赫兹的频率产生均匀的细液滴。

Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module.

机构信息

Department of Biomedical Engineering, University of California, Irvine, 3406 Engineering Hall, Irvine, California 92697, USA.

Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA.

出版信息

Biomicrofluidics. 2013 Jun 18;7(3):34112. doi: 10.1063/1.4811276. eCollection 2013.

Abstract

Droplet-based microfluidic systems enable a variety of biomedical applications from point-of-care diagnostics with third world implications, to targeted therapeutics alongside medical ultrasound, to molecular screening and genetic testing. Though these systems maintain the key advantage of precise control of the size and composition of the droplet as compared to conventional methods of production, the low rates at which droplets are produced limits translation beyond the laboratory setting. As well, previous attempts to scale up shear-based microfluidic systems focused on increasing the volumetric throughput and formed large droplets, negating many practical applications of emulsions such as site-specific therapeutics. We present the operation of a parallel module with eight flow-focusing orifices in the dripping regime of droplet formation for the generation of uniform fine droplets at rates in the hundreds of kilohertz. Elevating the capillary number to access dripping, generation of monodisperse droplets of liquid perfluoropentane in the parallel module exceeded 3.69 × 10(5) droplets per second, or 1.33 × 10(9) droplets per hour, at a mean diameter of 9.8 μm. Our microfluidic method offers a novel means to amass uniform fine droplets in practical amounts, for instance, to satisfy clinical needs, with the potential for modification to form massive amounts of more complex droplets.

摘要

基于液滴的微流控系统能够实现各种生物医学应用,从具有第三世界影响的即时诊断到与医学超声相结合的靶向治疗,再到分子筛选和基因检测。尽管这些系统与传统的生产方法相比保持了精确控制液滴大小和组成的关键优势,但液滴的生成速率较低限制了其在实验室之外的应用。此外,之前尝试扩大基于剪切的微流控系统的规模主要集中在提高体积吞吐量和形成大液滴上,从而否定了乳液的许多实际应用,如靶向治疗。我们展示了在滴流形成模式下操作具有八个流聚焦孔的并行模块,以在数百千赫兹的速率生成均匀的细液滴。通过提高毛细管数来进入滴流模式,可以在并行模块中生成每秒钟超过 3.69×10(5)个单分散的全氟戊烷液滴,或每小时 1.33×10(9)个液滴,其平均直径为 9.8μm。我们的微流控方法提供了一种新颖的手段,可以在实际数量上聚集均匀的细液滴,例如,满足临床需求,并且有可能进行修改以形成大量更复杂的液滴。

相似文献

1
Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module.
Biomicrofluidics. 2013 Jun 18;7(3):34112. doi: 10.1063/1.4811276. eCollection 2013.
2
High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy.
Lab Chip. 2011 Dec 7;11(23):3990-8. doi: 10.1039/c1lc20615j. Epub 2011 Oct 20.
3
[Rapid generation of double-layer emulsion droplets based on microfluidic chip].
Sheng Wu Gong Cheng Xue Bao. 2020 Jul 25;36(7):1405-1413. doi: 10.13345/j.cjb.190525.
4
Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED).
Lab Chip. 2015 Dec 7;15(23):4387-92. doi: 10.1039/c5lc01025j.
5
High inertial microfluidics for droplet generation in a flow-focusing geometry.
Biomed Microdevices. 2019 Jun 15;21(3):50. doi: 10.1007/s10544-019-0405-x.
6
Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
J Colloid Interface Sci. 2019 Oct 1;553:382-389. doi: 10.1016/j.jcis.2019.05.100. Epub 2019 May 30.
7
Emulsion templating of poly(lactic acid) particles: droplet formation behavior.
Langmuir. 2012 Sep 11;28(36):12948-54. doi: 10.1021/la302092f. Epub 2012 Aug 29.
8
Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets.
Lab Chip. 2013 Dec 21;13(24):4750-4. doi: 10.1039/c3lc50979f.
9
Mode Transition of Droplet Formation in a Semi-3D Flow-Focusing Microfluidic Droplet System.
Micromachines (Basel). 2018 Mar 21;9(4):139. doi: 10.3390/mi9040139.

引用本文的文献

3
The application and prospects of 3D printable microgel in biomedical science and engineering.
Int J Bioprint. 2023 May 16;9(5):753. doi: 10.18063/ijb.753. eCollection 2023.
4
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.
Chem Rev. 2022 Nov 23;122(22):16839-16909. doi: 10.1021/acs.chemrev.1c00798. Epub 2022 Sep 15.
5
Strain Development in Microalgal Biotechnology-Random Mutagenesis Techniques.
Life (Basel). 2022 Jun 27;12(7):961. doi: 10.3390/life12070961.
6
Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges.
Biophys Rev. 2021 Nov 17;13(6):1245-1271. doi: 10.1007/s12551-021-00907-5. eCollection 2021 Dec.
7
Hydrogel microparticles for biomedical applications.
Nat Rev Mater. 2020 Jan;5(1):20-43. doi: 10.1038/s41578-019-0148-6. Epub 2019 Nov 7.
8
Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4269-4281. doi: 10.1021/acsbiomaterials.0c01612. Epub 2021 Feb 16.
9
Technological Approaches for Improving Vaccination Compliance and Coverage.
Vaccines (Basel). 2020 Jun 16;8(2):304. doi: 10.3390/vaccines8020304.
10
High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics.
ACS Omega. 2018 Aug 16;3(8):9296-9302. doi: 10.1021/acsomega.8b01768. eCollection 2018 Aug 31.

本文引用的文献

4
Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics.
Biomicrofluidics. 2011 Dec;5(4):44113-4411312. doi: 10.1063/1.3665221. Epub 2011 Dec 9.
5
Microfluidic generation of acoustically active nanodroplets.
Small. 2012 Jun 25;8(12):1876-9. doi: 10.1002/smll.201102418. Epub 2012 Mar 29.
6
High throughput production of single core double emulsions in a parallelized microfluidic device.
Lab Chip. 2012 Feb 21;12(4):802-7. doi: 10.1039/c2lc21033a. Epub 2012 Jan 6.
7
High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy.
Lab Chip. 2011 Dec 7;11(23):3990-8. doi: 10.1039/c1lc20615j. Epub 2011 Oct 20.
8
One-step formation of multiple emulsions in microfluidics.
Lab Chip. 2011 Jan 21;11(2):253-8. doi: 10.1039/c0lc00236d. Epub 2010 Oct 22.
9
Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion.
Ultrasound Med Biol. 2010 Aug;36(8):1364-75. doi: 10.1016/j.ultrasmedbio.2010.04.019.
10
High-performance single cell genetic analysis using microfluidic emulsion generator arrays.
Anal Chem. 2010 Apr 15;82(8):3183-90. doi: 10.1021/ac902683t.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验