Suppr超能文献

从蛋白质的复制历史推断蛋白质相互作用网络的进化历史的最大似然推断。

Maximum likelihood inference of the evolutionary history of a PPI network from the duplication history of its proteins.

机构信息

National University of Singapore, Singapore.

National University of Singapore, Singapore and University of East Anglia, Norwich.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2013 Nov-Dec;10(6):1412-21. doi: 10.1109/TCBB.2013.14.

Abstract

Evolutionary history of protein-protein interaction (PPI) networks provides valuable insight into molecular mechanisms of network growth. In this paper, we study how to infer the evolutionary history of a PPI network from its protein duplication relationship. We show that for a plausible evolutionary history of a PPI network, its relative quality, measured by the so-called loss number, is independent of the growth parameters of the network and can be computed efficiently. This finding leads us to propose two fast maximum likelihood algorithms to infer the evolutionary history of a PPI network given the duplication history of its proteins. Simulation studies demonstrated that our approach, which takes advantage of protein duplication information, outperforms NetArch, the first maximum likelihood algorithm for PPI network history reconstruction. Using the proposed method, we studied the topological change of the PPI networks of the yeast, fruitfly, and worm.

摘要

蛋白质-蛋白质相互作用(PPI)网络的进化历史为网络生长的分子机制提供了有价值的见解。在本文中,我们研究了如何从蛋白质复制关系推断 PPI 网络的进化历史。我们表明,对于 PPI 网络的一个合理的进化历史,其相对质量,由所谓的丢失数来衡量,与网络的生长参数无关,并且可以有效地计算。这一发现促使我们提出了两种快速最大似然算法,用于在给定蛋白质复制历史的情况下推断 PPI 网络的进化历史。模拟研究表明,我们的方法利用了蛋白质复制信息,优于 NetArch,这是第一个用于 PPI 网络历史重建的最大似然算法。使用所提出的方法,我们研究了酵母、果蝇和蠕虫的 PPI 网络的拓扑变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验