Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
Science. 2014 Jan 31;343(6170):529-33. doi: 10.1126/science.1246794. Epub 2014 Jan 9.
Many benthic marine animal populations are established and maintained by free-swimming larvae that recognize cues from surface-bound bacteria to settle and metamorphose. Larvae of the tubeworm Hydroides elegans, an important biofouling agent, require contact with surface-bound bacteria to undergo metamorphosis; however, the mechanisms that underpin this microbially mediated developmental transition have been enigmatic. Here, we show that a marine bacterium, Pseudoalteromonas luteoviolacea, produces arrays of phage tail-like structures that trigger metamorphosis of H. elegans. These arrays comprise about 100 contractile structures with outward-facing baseplates, linked by tail fibers and a dynamic hexagonal net. Not only do these arrays suggest a novel form of bacterium-animal interaction, they provide an entry point to understanding how marine biofilms can trigger animal development.
许多底栖海洋动物种群是由自由游动的幼虫建立和维持的,这些幼虫通过识别来自表面结合细菌的信号来定居和变态。作为一种重要的生物污损剂,管蠕虫 Hydroides elegans 的幼虫需要与表面结合的细菌接触才能进行变态;然而,支撑这种微生物介导的发育转变的机制一直是个谜。在这里,我们表明,一种海洋细菌 Pseudoalteromonas luteoviolacea 产生了一系列噬菌体尾状结构,触发了 H. elegans 的变态。这些排列由大约 100 个具有向外的基板的可收缩结构组成,通过尾纤维和动态六边形网连接。这些排列不仅表明了一种新型的细菌-动物相互作用形式,也为理解海洋生物膜如何触发动物发育提供了一个切入点。