State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun 130022, China.
J Colloid Interface Sci. 2014 Mar 1;417:217-26. doi: 10.1016/j.jcis.2013.11.004. Epub 2013 Nov 19.
In this work, novel magnetic polymeric core-shell structured microspheres with immobilized Ce(IV), Fe3O4@SiO2@PVPA-Ce(IV), were designed rationally and synthesized successfully via a facile route for the first time. Magnetic Fe3O4@SiO2 microspheres were first prepared by directly coating a thin layer of silica onto Fe3O4 magnetic particles using a sol-gel method, a poly(vinylphosphonic acid) (PVPA) shell was then coated on the Fe3O4@SiO2 microspheres to form Fe3O4@SiO2@PVPA microspheres through a radical polymerization reaction, and finally Ce(IV) ions were robustly immobilized onto the Fe3O4@SiO2@PVPA microspheres through strong chelation between Ce(IV) ions and phosphate moieties in the PVPA. The applicability of the Fe3O4@SiO2@PVPA-Ce(IV) microspheres for selective enrichment and rapid separation of phosphopeptides from proteolytic digests of standard and real protein samples was investigated. The results demonstrated that the core-shell structured Fe3O4@SiO2@PVPA-Ce(IV) microspheres with abundant Ce(IV) affinity sites and excellent magnetic responsiveness can effectively purify phosphopeptides from complex biosamples for MS detection taking advantage of the rapid magnetic separation and the selective affinity between Ce(IV) ions and phosphate moieties of the phosphopeptides. Furthermore, they can be effectively recycled and show good reusability, and have better performance than commercial TiO2 beads and homemade Fe3O4@PMAA-Ce(IV) microspheres. Thus the Fe3O4@SiO2@PVPA-Ce(IV) microspheres can benefit greatly the mass spectrometric qualitative analysis of phosphopeptides in phosphoproteome research.
在这项工作中,通过一种简便的方法,首次成功设计并合成了新型磁性聚合物核壳结构微球,固定化 Ce(IV),Fe3O4@SiO2@PVPA-Ce(IV)。首先通过溶胶-凝胶法直接在 Fe3O4 磁性颗粒上包覆一层薄的二氧化硅,制备了磁性 Fe3O4@SiO2 微球,然后通过自由基聚合反应在 Fe3O4@SiO2 微球上包覆一层聚(乙烯基膦酸)(PVPA)壳,形成 Fe3O4@SiO2@PVPA 微球,最后通过 Ce(IV)离子与 PVPA 中的磷酸部分之间的强螯合作用将 Ce(IV)离子牢固地固定在 Fe3O4@SiO2@PVPA 微球上。研究了 Fe3O4@SiO2@PVPA-Ce(IV)微球对标准和实际蛋白质样品酶解物中磷酸肽的选择性富集和快速分离的适用性。结果表明,具有丰富 Ce(IV)亲和位点和优异磁响应性的核壳结构 Fe3O4@SiO2@PVPA-Ce(IV)微球可以有效地从复杂生物样品中纯化磷酸肽,用于 MS 检测,利用快速磁分离和磷酸肽中 Ce(IV)离子与磷酸部分之间的选择性亲和性。此外,它们可以有效地回收并具有良好的可重复使用性,并且性能优于商业 TiO2 珠和自制的 Fe3O4@PMAA-Ce(IV)微球。因此,Fe3O4@SiO2@PVPA-Ce(IV)微球可极大地有益于磷酸肽在磷酸蛋白质组研究中的质谱定性分析。