Suppr超能文献

Stress-induced changes in t-[35S]butylbicyclophosphorothionate binding to gamma-aminobutyric acid-gated chloride channels are mimicked by in vitro occupation of benzodiazepine receptors.

作者信息

Trullas R, Havoundjian H, Skolnick P

出版信息

J Neurochem. 1987 Sep;49(3):968-74. doi: 10.1111/j.1471-4159.1987.tb00988.x.

Abstract

The allosteric modulation of t-[35S]butylbicyclophosphorothionate binding by flunitrazepam was studied in well-washed brain membranes prepared from control and swim-stressed rats. Swim stress has been reported to decrease the KD and increase the Bmax of this radioligand. Flunitrazepam increased radioligand binding with equal potency (EC50 approximately 11 nM) in both groups, but the maximal enhancement (efficacy) produced by this drug was significantly greater in control than in swim-stressed rats. Ro 15-1788 (a benzodiazepine receptor antagonist) blocked the effect of flunitrazepam on t-[35S]butylbicyclophosphorothionate binding in both groups. This increase in t-[35S]butylbicyclophosphorothionate binding resulted from a significant reduction in KD with no alteration in Bmax. The KD values obtained in cortical membranes of control rats after addition of flunitrazepam were not significantly different from those in the swim-stressed group. Preincubation of cortical homogenates from control animals with flunitrazepam prior to extensive tissue washing resulted in Bmax and KD values of t-[35S]butylbicyclophosphorothionate similar to those obtained in stressed animals. These findings suggest that stress and flunitrazepam may share a common mechanism in regulating t-[35S]butylbicyclophosphorothionate binding and support the concept that stress-induced modification of gamma-aminobutyric acid (GABA)-gated chloride channels in the CNS results from the release of an endogenous modulator (with benzodiazepine-like properties) of the benzodiazepine-GABA receptor chloride ionophore receptor complex.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验