Massie Isobel, Selden Clare, Hodgson Humphrey, Fuller Barry, Gibbons Stephanie, Morris G John
1 UCL Institute for Liver and Digestive Health-Liver Group, University College Medical School , London, United Kingdom .
Tissue Eng Part C Methods. 2014 Sep;20(9):693-702. doi: 10.1089/ten.TEC.2013.0571. Epub 2014 Feb 24.
Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to -60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze-viabilities at 93.4% ± 7.4%, viable cell numbers at 14.3 ± 1.7 million nuclei/mL alginate, and protein secretion at 10.5 ± 1.7 μg/mL/24 h were obtained which, compared well with control ELS (viability -98.1% ± 0.9%; viable cell numbers -18.3 ± 1.0 million nuclei/mL alginate; and protein secretion -18.7 ± 1.8 μg/mL/24 h). Large volume GMP cryopreservation of ELS is possible with good functional recovery using the VIA Freeze and may also be applied to other regenerative medicine applications.
在再生医学应用中,对低温保存方案的需求日益增加,但必须在临床规模上提供功能正常的产品,并符合良好生产规范(GMP)。虽然使用基于斯特林制冷机的程序降温冷冻机(CRF)(EF600)在小规模上实现GMP低温保存是可行的,但由于热传递问题和冰核形成的控制,成功进行大规模GMP低温保存更具挑战性,这两个复杂事件都会影响成功率。我们开发了一种基于大型制冷机的CRF(VIA Freeze),它可以处理更大的体积,并使用海藻酸盐包封的肝细胞(HepG2)球体(ELS)对其进行了评估。预计ELS将构成生物人工肝的细胞成分,临床使用时需要约2升的体积。在对小体积(500μL)和大体积(200 mL)样品的整个冷却过程中,记录了样品温度和斯特林制冷机的功耗。使用活力(FDA/PI染色及图像分析)、细胞数量(细胞核计数)和功能(蛋白质分泌)评估ELS的回收率,同时结合低温扫描电子显微镜和冷冻置换技术来确定可能的损伤机制。在EF600和VIA Freeze中都成功地将缓慢冷却曲线应用于样品,并评估了多种冷却和升温曲线。在EF600和VIA Freeze中都实施了一种从冰核形成到-60°C的非线性冷却曲线的优化冷却方案。在VIA Freeze中,冰核形成由控制软件检测,这既允许为质量控制目的对冰核形成事件进行非侵入性检测,也有可能在冰核形成后以主动方式修改冷却曲线。当在VIA Freeze中处理200 mL的ELS时,获得的活力为93.4%±7.4%,活细胞数量为14.3±1.7×10⁶个细胞核/mL海藻酸盐,蛋白质分泌为10.5±1.7μg/mL/24 h,与对照ELS相比(活力-98.1%±0.9%;活细胞数量-18.3±1.0×10⁶个细胞核/mL海藻酸盐;蛋白质分泌-18.7±1.8μg/mL/24 h)效果良好。使用VIA Freeze对ELS进行大体积GMP低温保存并实现良好的功能恢复是可能的,并且也可应用于其他再生医学应用。