Department of Medicinal Chemistry, RIA iMed, AstraZeneca R&D , Pepparedsleden 1, S-431 83 Mölndal, Sweden.
Chem Res Toxicol. 2014 Feb 17;27(2):265-78. doi: 10.1021/tx400376u. Epub 2014 Jan 24.
Primary aromatic and heteroaromatic amines are notoriously known as potential mutagens and carcinogens. The major event of the mechanism of their mutagenicity is N-hydroxylation by P450 enzymes, primarily P450 1A2 (CYP1A2), which leads to the formation of nitrenium ions that covalently modify nucleobases of DNA. Energy profiles of the NH bond activation steps of two possible mechanisms of N-hydroxylation of a number of aromatic amines by CYP1A2, radicaloid and anionic, are studied by dispersion-corrected DFT calculations. The classical radicaloid mechanism is mediated by H-atom transfer to the electrophilic ferryl-oxo intermediate of the P450 catalytic cycle (called Compound I or Cpd I), whereas the alternative anionic mechanism involves proton transfer to the preceding nucleophilic ferrous-peroxo species. The key structural features of the catalytic site of human CYP1A2 revealed by X-ray crystallography are maintained in calculations. The obtained DFT reaction profiles and additional calculations that account for nondynamical electron correlation suggest that Cpd I has higher thermodynamic drive to activate aromatic amines than the ferrous-peroxo species. Nevertheless, the anionic mechanism is demonstrated to be consistent with a variety of experimental observations. Thus, energy of the proton transfer from aromatic amines to the ferrous-peroxo dianion splits aromatic amines into two classes with different mutagenicity mechanisms. Favorable or slightly unfavorable barrier-free proton transfer is inherent in compounds that undergo nitrenium ion mediated mutagenicity. Monocyclic electron-rich aromatic amines that do not follow this mutagenicity mechanism show significantly unfavorable proton transfer. Feasibility of the entire anionic mechanism is demonstrated by favorable Gibbs energy profiles of both chemical steps, NH bond activation, and NO bond formation. Taken together, results suggest that the N-hydroxylation of aromatic amines in CYP1A2 undergoes the anionic mechanism. Possible reasons for the apparent inability of Cpd I to activate aromatic amines in CYP1A2 are discussed.
芳香族和杂环族伯胺是众所周知的潜在诱变剂和致癌物质。其致突变机制的主要事件是 P450 酶(主要是 CYP1A2)的 N-羟化作用,导致形成氮宾离子,从而使 DNA 的核碱基发生共价修饰。通过色散校正的 DFT 计算研究了 CYP1A2 对多种芳香族伯胺的 N-羟化作用的两种可能机制(自由基型和阴离子型)中 NH 键活化步骤的能量分布。经典的自由基型机制是通过 H 原子转移到 P450 催化循环的亲电铁氧戊环中间物(称为复合物 I 或 Cpd I)介导的,而替代的阴离子型机制涉及质子转移到前面的亲核亚铁过氧物种。X 射线晶体学揭示的人 CYP1A2 催化位点的关键结构特征在计算中得以保留。获得的 DFT 反应轮廓和额外的计算考虑了非动力学电子相关,表明 Cpd I 比亚铁过氧物种更有热力学动力激活芳香族伯胺。然而,阴离子型机制与各种实验观察结果一致。因此,质子从芳香族伯胺转移到亚铁过氧二阴离子的能量将芳香族伯胺分为具有不同致突变机制的两类。有利于或略微不利于无势垒质子转移是经历氮宾离子介导致突变性的化合物所固有的。不符合这种致突变机制的单环富电子芳香族伯胺显示出明显不利的质子转移。整个阴离子机制的可行性通过 NH 键活化和 NO 键形成的两个化学步骤的有利吉布斯能量分布得到证明。综上所述,结果表明 CYP1A2 中的芳香族伯胺 N-羟化作用通过阴离子机制进行。讨论了 Cpd I 似乎无法在 CYP1A2 中激活芳香族伯胺的可能原因。