Suppr超能文献

研究黑腹果蝇的昼夜节律。

Studying circadian rhythms in Drosophila melanogaster.

作者信息

Tataroglu Ozgur, Emery Patrick

机构信息

Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States.

Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, United States.

出版信息

Methods. 2014 Jun 15;68(1):140-50. doi: 10.1016/j.ymeth.2014.01.001. Epub 2014 Jan 9.

Abstract

Circadian rhythms have a profound influence on most bodily functions: from metabolism to complex behaviors. They ensure that all these biological processes are optimized with the time-of-day. They are generated by endogenous molecular oscillators that have a period that closely, but not exactly, matches day length. These molecular clocks are synchronized by environmental cycles such as light intensity and temperature. Drosophila melanogaster has been a model organism of choice to understand genetically, molecularly and at the level of neural circuits how circadian rhythms are generated, how they are synchronized by environmental cues, and how they drive behavioral cycles such as locomotor rhythms. This review will cover a wide range of techniques that have been instrumental to our understanding of Drosophila circadian rhythms, and that are essential for current and future research.

摘要

昼夜节律对大多数身体功能有着深远影响

从新陈代谢到复杂行为。它们确保所有这些生物过程在一天中的不同时间得到优化。它们由内源性分子振荡器产生,其周期与白天长度紧密但不完全匹配。这些分子时钟通过诸如光照强度和温度等环境周期进行同步。黑腹果蝇一直是研究昼夜节律如何产生、如何通过环境线索同步以及如何驱动诸如运动节律等行为周期的遗传学、分子学和神经回路层面的首选模式生物。本综述将涵盖一系列对我们理解果蝇昼夜节律至关重要且对当前和未来研究必不可少的技术。

相似文献

1
Studying circadian rhythms in Drosophila melanogaster.
Methods. 2014 Jun 15;68(1):140-50. doi: 10.1016/j.ymeth.2014.01.001. Epub 2014 Jan 9.
2
Circadian Rhythms and Sleep in .
Genetics. 2017 Apr;205(4):1373-1397. doi: 10.1534/genetics.115.185157.
3
Circadian organization of behavior and physiology in Drosophila.
Annu Rev Physiol. 2010;72:605-24. doi: 10.1146/annurev-physiol-021909-135815.
4
miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior.
J Neurosci. 2016 Feb 10;36(6):2007-13. doi: 10.1523/JNEUROSCI.3286-15.2016.
5
Light triggers a network switch between circadian morning and evening oscillators controlling behaviour during daily temperature cycles.
PLoS Genet. 2022 Nov 11;18(11):e1010487. doi: 10.1371/journal.pgen.1010487. eCollection 2022 Nov.
7
A circadian output center controlling feeding:fasting rhythms in Drosophila.
PLoS Genet. 2019 Nov 6;15(11):e1008478. doi: 10.1371/journal.pgen.1008478. eCollection 2019 Nov.
10
Neural circuits underlying circadian behavior in Drosophila melanogaster.
Behav Processes. 2006 Feb 28;71(2-3):211-25. doi: 10.1016/j.beproc.2005.12.008. Epub 2006 Jan 18.

引用本文的文献

1
acts During Development to Determine the Phase of Adult Circadian Behavior.
J Biol Rhythms. 2025 Aug 29:7487304251361579. doi: 10.1177/07487304251361579.
2
Unpredictable disturbance and its effects on activity behavior and lifespan in Drosophila melanogaster.
Biol Open. 2025 Jul 15;14(7). doi: 10.1242/bio.062071. Epub 2025 Jul 22.
3
Upstream open reading frames dynamically modulate CLOCK protein translation to regulate circadian rhythms and sleep.
PLoS Biol. 2025 May 12;23(5):e3003173. doi: 10.1371/journal.pbio.3003173. eCollection 2025 May.
7
Flight to insight: maximizing the potential of models of C9orf72-FTD.
Front Mol Neurosci. 2024 Jun 10;17:1434443. doi: 10.3389/fnmol.2024.1434443. eCollection 2024.
8
Timeless noncoding DNA contains cell-type preferential enhancers important for proper Drosophila circadian regulation.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2321338121. doi: 10.1073/pnas.2321338121. Epub 2024 Apr 3.
9
Thousands of oscillating LncRNAs in the mouse testis.
Comput Struct Biotechnol J. 2023 Nov 29;23:330-346. doi: 10.1016/j.csbj.2023.11.046. eCollection 2024 Dec.
10
Bumble Bees () Use Time-Memory to Associate Reward with Color and Time of Day.
Insects. 2023 Aug 14;14(8):707. doi: 10.3390/insects14080707.

本文引用的文献

1
Flavin reduction activates Drosophila cryptochrome.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20455-60. doi: 10.1073/pnas.1313336110. Epub 2013 Dec 2.
2
Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila.
PLoS Genet. 2013;9(9):e1003749. doi: 10.1371/journal.pgen.1003749. Epub 2013 Sep 26.
3
ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
Nat Neurosci. 2013 Oct;16(10):1499-508. doi: 10.1038/nn.3502. Epub 2013 Sep 1.
4
Genetically targeted optical electrophysiology in intact neural circuits.
Cell. 2013 Aug 15;154(4):904-13. doi: 10.1016/j.cell.2013.07.027. Epub 2013 Aug 8.
6
Exquisite light sensitivity of Drosophila melanogaster cryptochrome.
PLoS Genet. 2013;9(7):e1003615. doi: 10.1371/journal.pgen.1003615. Epub 2013 Jul 18.
8
A role for Drosophila ATX2 in activation of PER translation and circadian behavior.
Science. 2013 May 17;340(6134):879-82. doi: 10.1126/science.1234746.
9
ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila.
Science. 2013 May 17;340(6134):875-9. doi: 10.1126/science.1234785.
10
Significance of activity peaks in fruit flies, Drosophila melanogaster, under seminatural conditions.
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8984-9. doi: 10.1073/pnas.1220960110. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验