Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
Institute of Oral Medicine, and National Cheng Kung University, Tainan 70101, Taiwan.
Free Radic Biol Med. 2014 Apr;69:86-95. doi: 10.1016/j.freeradbiomed.2013.12.019. Epub 2014 Jan 8.
The DNA mismatch-repair (MMR) system corrects replicative errors and minimizes mutations that occur at a high rate in microsatellites. Patients with chronic inflammation or inflammation-associated cancer display microsatellite instability (MSI), indicating a possible MMR inactivation. In fact, H2O2-generated oxidative stress inactivates the MMR function and increases mutation accumulation in a reporter microsatellite. However, it remains unclear whether MSI induced by oxidative stress is preventable because of the lack of a sufficiently sensitive detection assay. Here, we developed and characterized a dual-fluorescent system, utilizing DsRed harboring the (CA)13 microsatellite as a reporter and GFP for normalization, in near-isogenic human colorectal cancer cell lines. Via flow cytometry, this reporter sensitively detected H2O2-generated oxidative microsatellite mutations in a dose-dependent manner. The reporter further revealed that glutathione or N-acetylcysteine was better than aspirin and ascorbic acid for suppressing oxidative microsatellite mutations. These two thiol compounds also partially suppressed oxidative frameshift mutations in the coding microsatellites of the hMSH6 and CHK1 genes based on a fluoresceinated PCR-based assay. MSI suppression by N-acetylcysteine appears to be mediated through reduction of oxidative frameshift mutations in the coding microsatellite of hMSH6 and protection of hMSH6 and other MMR protein levels from being decreased by H2O2. Our findings suggest a linkage between oxidative damage, MMR deficiency, and MSI. The two thiol compounds are potentially valuable for preventing inflammation-associated MSI. The dual-fluorescent reporter with improved features will facilitate identification of additional compounds that modulate MSI, which is relevant to cancer initiation and progression.
DNA 错配修复 (MMR) 系统纠正复制错误并最小化微卫星中高频发生的突变。患有慢性炎症或炎症相关癌症的患者表现出微卫星不稳定性 (MSI),表明可能存在 MMR 失活。事实上,H2O2 产生的氧化应激使 MMR 功能失活,并增加报告微卫星中的突变积累。然而,由于缺乏足够敏感的检测测定,仍然不清楚氧化应激诱导的 MSI 是否可以预防。在这里,我们开发并表征了一种双荧光系统,利用含有 (CA)13 微卫星的 DsRed 作为报告基因,GFP 作为归一化,在近等基因的人结直肠癌细胞系中。通过流式细胞术,该报告系统以剂量依赖的方式灵敏地检测到 H2O2 产生的氧化微卫星突变。该报告系统进一步表明,谷胱甘肽或 N-乙酰半胱氨酸比阿司匹林和抗坏血酸更能抑制氧化微卫星突变。基于荧光 PCR 测定,这两种巯基化合物还部分抑制了 hMSH6 和 CHK1 基因编码微卫星中的氧化移码突变。基于 N-乙酰半胱氨酸的 MSI 抑制似乎是通过减少 hMSH6 编码微卫星中的氧化移码突变以及保护 hMSH6 和其他 MMR 蛋白水平免受 H2O2 降低来介导的。我们的发现表明氧化损伤、MMR 缺陷和 MSI 之间存在联系。这两种巯基化合物可能对预防炎症相关的 MSI 有价值。具有改进特征的双荧光报告将有助于鉴定调节 MSI 的其他化合物,这与癌症的发生和进展有关。