Suppr超能文献

结合网络筛选和推断来识别主调控因子候选物。

Identification of master regulator candidates in conjunction with network screening and inference.

作者信息

Saito Shigeru, Zhou Xinrong, Bae Taejeong, Kim Sunghoon, Horimoto Katsuhisa

机构信息

INFOCOM CORPORATION, Sumitomo Fudosan Harajuku Building, 2-34-17, Jingumae, Shibuya-ku, Tokyo 150-0001, Japan.

Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

出版信息

Int J Data Min Bioinform. 2013;8(3):366-80. doi: 10.1504/ijdmb.2013.056077.

Abstract

We developed a procedure for identifying transcriptional Master Regulators (MRs) related to special biological phenomena, such as diseases, in conjunction with network screening and inference. Network screening is a system for detecting activated transcriptional regulatory networks under particular conditions, based on the estimation of graph structure consistency with the measured data. Since network screening utilises the known Transcriptional Factor (TF)-gene relationships as the experimental evidence for molecular relationships, its performance depends on the ensemble of known TF networks used for its analysis. To compensate for its restrictions, a network inference method, the path consistency algorithm, is concomitantly utilised to identify MRs. The performance is illustrated by means of the known MRs in brain tumours that were computationally inferred and experimentally verified. As a result, the present procedure worked well for identifying MRs, in comparison to the previous computational selection for experimental verification.

摘要

我们开发了一种程序,结合网络筛选和推理来识别与特殊生物学现象(如疾病)相关的转录主调控因子(MRs)。网络筛选是一种基于与测量数据的图结构一致性估计来检测特定条件下激活的转录调控网络的系统。由于网络筛选利用已知的转录因子(TF)-基因关系作为分子关系的实验证据,其性能取决于用于分析的已知TF网络的集合。为了弥补其局限性,同时利用一种网络推理方法——路径一致性算法来识别MRs。通过对脑肿瘤中已知的MRs进行计算推断和实验验证来说明该方法的性能。结果表明,与之前用于实验验证的计算选择方法相比,本程序在识别MRs方面表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验