Suppr超能文献

[红松人工林一级分枝大小:基于线性混合效应模型的预测]

[Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].

作者信息

Dong Ling-Bo, Liu Zhao-Gang, Li Feng-Ri, Jiang Li-Chun

机构信息

College of Forestry, Northeast Forestry University, Harbin 150040, China.

出版信息

Ying Yong Sheng Tai Xue Bao. 2013 Sep;24(9):2447-56.

Abstract

By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

摘要

利用中国东北黑龙江省孟家岗林场红松人工林12个采样区60株采样树的955个标准枝条的分支分析数据,基于线性混合效应模型理论和方法,建立了预测枝条变量(包括一级枝条直径、长度和角度)的模型。考虑到树木效应,使用SAS软件的MIXED模块拟合预测模型。结果表明,选择合适的随机效应参数和方差协方差结构可以提高模型的拟合精度。然后,将包括复对称结构(CS)、一阶自回归结构[AR(1)]和一阶自回归移动平均结构[ARMA(1,1)]在内的相关结构添加到最优枝条大小混合效应模型中。AR(1)显著提高了枝条直径和长度混合效应模型的拟合精度,但这三种结构均未提高枝条角度混合效应模型的精度。为了描述建立混合效应模型过程中的异方差性,将CF1和CF2函数添加到枝条混合效应模型中。CF1函数显著提高了枝条角度混合模型的拟合效果,而CF2函数显著提高了枝条直径和长度混合模型的拟合效果。模型验证证实,与传统回归模型相比,混合效应模型可以提高红松人工林枝条大小预测的精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验