Suppr超能文献

基于混合效应模型的红松人工林林分结构特征研究

[Knot attributes of Korean pine plantation based on mixed effect model.].

作者信息

Jia Wei Wei, Cui Can, Li Feng Ri

机构信息

College of Forestry, Northeast Forestry University, Harbin 150040, China.

出版信息

Ying Yong Sheng Tai Xue Bao. 2018 Jan;29(1):33-43. doi: 10.13287/j.1001-9332.201801.020.

Abstract

Based on 1534 knot data from 60 sample trees in a Korean pine plantation in Mengjiagang Forest Farm, Heilongjiang Province, China, mixed effect model of knot attributefactors (knot diameter, sound knot length, year of death of knot and knot angle) of Korean pine plantation was established using NLMIXED and GLIMMIX procedures of SAS software. The prediction accuracy of models was compared using evaluation statistics, such as Akaike information criterion (AIC), Bayesian information criterion (BIC), -2Log likelihood(-2LL), and likelihood ratio test (LRT). Results showed that all of the mixed effect models that considered tree effect performed better than conventional fixed-effect models. For knot diameter models, the model with random parameter combination of b, b had the best performance. For sound knot length models, the model with random parameter combination of b, b had the best performance. For the models of year of death of knot, the model with random variables of knot diameter was proved to be the optimal generalized linear mixed model. For the models of knot angle, the model with randomvariables of intercept, knot diameter, sound knot length was proved to be the optimal generalized linear mixed model. Mixed effect model was more effective than conventional fixed-effect model for describing knot attributes. The combination of knot attributes models and reasonable prunning schemes could improve timber quality of Korean pine which is one of the main commercial tree species in Northeast China.

摘要

基于中国黑龙江省孟家岗林场红松人工林中60株样本树的1534个节子数据,利用SAS软件的NLMIXED和GLIMMIX过程建立了红松人工节节子属性因子(节子直径、健全节子长度、节子死亡年份和节子角度)的混合效应模型。使用赤池信息准则(AIC)、贝叶斯信息准则(BIC)、-2对数似然(-2LL)和似然比检验(LRT)等评价统计量比较了模型的预测精度。结果表明,所有考虑树木效应的混合效应模型均比传统固定效应模型表现更好。对于节子直径模型,具有随机参数组合b、b的模型性能最佳。对于健全节子长度模型,具有随机参数组合b、b的模型性能最佳。对于节子死亡年份模型,证明具有节子直径随机变量的模型是最优广义线性混合模型。对于节子角度模型,证明具有截距、节子直径、健全节子长度随机变量的模型是最优广义线性混合模型。混合效应模型在描述节子属性方面比传统固定效应模型更有效。节子属性模型与合理的修剪方案相结合可以提高红松木材质量,红松是中国东北地区主要的商品树种之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验