Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States.
J Am Chem Soc. 2014 Feb 5;136(5):1734-7. doi: 10.1021/ja4113885. Epub 2014 Jan 21.
High surface area tin oxide nanocrystals prepared by a facile hydrothermal method are evaluated as electrocatalysts toward CO2 reduction to formate. At these novel nanostructured tin catalysts, CO2 reduction occurs selectively to formate at overpotentials as low as ∼340 mV. In aqueous NaHCO3 solutions, maximum Faradaic efficiencies for formate production of >93% have been reached with high stability and current densities of >10 mA/cm(2) on graphene supports. The notable reactivity toward CO2 reduction achieved here may arise from a compromise between the strength of the interaction between CO2(•-) and the nanoscale tin surface and subsequent kinetic activation toward protonation and further reduction.
通过简便的水热法制备的具有高表面积的氧化亚锡纳米晶体被评估为电化学催化剂,用于将 CO2 还原为甲酸盐。在这些新型纳米结构锡催化剂中,CO2 还原在低至约 340 mV 的过电势下选择性地生成甲酸盐。在水性 NaHCO3 溶液中,在石墨烯载体上达到了超过 93%的高甲酸生产法拉第效率和 >10 mA/cm2 的高稳定性和电流密度。在此处实现的对 CO2 还原的显著反应性可能源于 CO2(-•)与纳米尺度锡表面之间的相互作用强度之间的折衷,以及随后对质子化和进一步还原的动力学激活。
ACS Appl Mater Interfaces. 2017-12-8
J Colloid Interface Sci. 2018-7-20
ACS Appl Mater Interfaces. 2018-8-20
Angew Chem Int Ed Engl. 2018-6-4
Nanomicro Lett. 2023-4-30
Molecules. 2023-4-16