骨髓间充质干细胞在骨源性支架上的血管生成/成骨反应:低氧的影响及 PI3K/Akt 介导的 VEGF-VEGFR 通路的作用。
Angiogenic/osteogenic response of BMMSCs on bone-derived scaffold: effect of hypoxia and role of PI3K/Akt-mediated VEGF-VEGFR pathway.
机构信息
Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China.
出版信息
Biotechnol J. 2014 Jul;9(7):944-53. doi: 10.1002/biot.201300310. Epub 2014 Feb 25.
Bone tissue deficiency is a common clinical challenge. Tissue-engineered bone constructs are an effective approach for the repair of orthopedic bone defects. Mimicking the essential components of the in vivo microenvironment is an efficient way to develop functional constructs. In this study, bone marrow-derived mesenchymal stromal cells (BMMSCs) were seeded into bone-derived scaffolds, a material with similar structure to natural bone. This was done under hypoxic conditions, an environment that imitates that experienced by BMMSCs in vivo. Our data indicate that hypoxia (5% O2 ) significantly increases the proliferation of BMMSCs seeded in scaffolds. As reflected by highly expressed osteogenesis- and angiogenesis-associated biomarkers, including vascular endothelial growth factor (VEGF), RUNX2, bone morphogenetic protein-2/4 and osteopontin, hypoxia also significantly increases the osteogenic and angiogenic responses of BMMSCs seeded into bone-derived scaffold composites. PI3K/Akt-mediated regulation of VEGF-activated VEGFR1/2 signaling is important for hypoxia-induced proliferative/osteogenic/angiogenic responses in BMMSC cellular scaffolds. The combination of bone-derived scaffolds and hypoxia is conducive to the differentiation of BMMSCs into functional tissue-engineered scaffold composites.
骨组织缺损是一种常见的临床挑战。组织工程骨构建物是修复骨科骨缺损的有效方法。模拟体内微环境的基本组成部分是开发功能性构建物的有效方法。在这项研究中,骨髓间充质基质细胞(BMMSCs)被接种到具有类似天然骨结构的骨衍生支架中。这是在缺氧条件下进行的,这种环境模拟了 BMMSCs 在体内经历的环境。我们的数据表明,缺氧(5%O2)显著增加了接种在支架中的 BMMSCs 的增殖。高度表达的成骨和血管生成相关生物标志物,包括血管内皮生长因子(VEGF)、RUNX2、骨形态发生蛋白-2/4 和骨桥蛋白,表明缺氧也显著增加了接种到骨衍生支架复合材料中的 BMMSCs 的成骨和血管生成反应。PI3K/Akt 介导的 VEGF 激活的 VEGFR1/2 信号转导调节对于 BMMSC 细胞支架中的缺氧诱导的增殖/成骨/血管生成反应很重要。骨衍生支架和缺氧的结合有利于 BMMSCs 分化为功能性组织工程支架复合材料。