Suppr超能文献

基于个体化纤维的肌肉包裹模型。

Patient-specific fibre-based models of muscle wrapping.

机构信息

Department of Computer Science and Engineering , University of West Bohemia , Plzeň , Czech Republic.

Centre for Computer Graphics and Visualisation , University of Bedfordshire , Luton , UK.

出版信息

Interface Focus. 2013 Apr 6;3(2):20120062. doi: 10.1098/rsfs.2012.0062.

Abstract

In many biomechanical problems, the availability of a suitable model for the wrapping of muscles when undergoing movement is essential for the estimation of forces produced on and by the body during motion. This is an important factor in the Osteoporotic Virtual Physiological Human project which is investigating the likelihood of fracture for osteoporotic patients undertaking a variety of movements. The weakening of their skeletons makes them particularly vulnerable to bone fracture caused by excessive loading being placed on the bones, even in simple everyday tasks. This paper provides an overview of a novel volumetric model that describes muscle wrapping around bones and other muscles during movement, and which includes a consideration of how the orientations of the muscle fibres change during the motion. The method can calculate the form of wrapping of a muscle of medium size and visualize the outcome within tenths of seconds on commodity hardware, while conserving muscle volume. This makes the method suitable not only for educational biomedical software, but also for clinical applications used to identify weak muscles that should be strengthened during rehabilitation or to identify bone stresses in order to estimate the risk of fractures.

摘要

在许多生物力学问题中,当肌肉运动时,提供一种合适的模型来描述肌肉的包裹情况对于估计运动过程中身体产生的力至关重要。这是骨质疏松虚拟生理人的项目中的一个重要因素,该项目正在研究骨质疏松患者在进行各种运动时骨折的可能性。他们骨骼的弱化使他们特别容易因过度负荷而导致骨折,即使是在简单的日常活动中。本文概述了一种新颖的体积模型,该模型描述了肌肉在运动过程中围绕骨骼和其他肌肉的包裹情况,并考虑了肌肉纤维在运动过程中的方向变化。该方法可以计算中等大小肌肉的包裹形式,并在商品硬件上以十分之一秒的速度可视化结果,同时保持肌肉体积不变。这使得该方法不仅适用于教育生物医学软件,也适用于临床应用,用于识别在康复过程中需要加强的弱肌肉,或识别骨骼的压力以估计骨折的风险。

相似文献

1
Patient-specific fibre-based models of muscle wrapping.
Interface Focus. 2013 Apr 6;3(2):20120062. doi: 10.1098/rsfs.2012.0062.
2
Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
J Biomech. 2019 Sep 20;94:230-234. doi: 10.1016/j.jbiomech.2019.07.042. Epub 2019 Aug 7.
3
Muscle Path Wrapping on Arbitrary Surfaces.
IEEE Trans Biomed Eng. 2021 Feb;68(2):628-638. doi: 10.1109/TBME.2020.3009922. Epub 2021 Jan 20.
4
Automated muscle wrapping using finite element contact detection.
J Biomech. 2010 Jul 20;43(10):1931-40. doi: 10.1016/j.jbiomech.2010.03.018. Epub 2010 May 7.
5
Muscle wrapping on arbitrary meshes with the heat method.
Comput Methods Biomech Biomed Engin. 2017 Feb;20(2):119-129. doi: 10.1080/10255842.2016.1205043. Epub 2016 Jul 25.
7
Automatic reconstruction of the muscle architecture from the superficial layer fibres data.
Comput Methods Programs Biomed. 2017 Oct;150:85-95. doi: 10.1016/j.cmpb.2017.08.002. Epub 2017 Aug 8.
8
The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh.
J Biomech. 2010 Sep 17;43(13):2601-7. doi: 10.1016/j.jbiomech.2010.05.005. Epub 2010 Jun 2.
9
Torus obstacle method as a wrapping approach of the deltoid muscle group for humeral abduction in musculoskeletal simulation.
J Biomech. 2020 Aug 26;109:109864. doi: 10.1016/j.jbiomech.2020.109864. Epub 2020 Jun 1.
10
Defining and evaluating wrapping surfaces for MRI-derived spinal muscle paths.
J Biomech. 2008;41(7):1450-7. doi: 10.1016/j.jbiomech.2008.02.027. Epub 2008 Apr 9.

引用本文的文献

1
EMG-Driven Musculoskeletal Model Calibration With Wrapping Surface Personalization.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:4235-4244. doi: 10.1109/TNSRE.2023.3323516. Epub 2023 Oct 31.
2
A Shoulder Musculoskeletal Model with Three-Dimensional Complex Muscle Geometries.
Ann Biomed Eng. 2023 May;51(5):1079-1093. doi: 10.1007/s10439-023-03189-y. Epub 2023 Apr 6.
3
Mechanics of Psoas Tendon Snapping. A Virtual Population Study.
Front Bioeng Biotechnol. 2020 Mar 27;8:264. doi: 10.3389/fbioe.2020.00264. eCollection 2020.
4
Automated Generation of Three-Dimensional Complex Muscle Geometries for Use in Personalised Musculoskeletal Models.
Ann Biomed Eng. 2020 Jun;48(6):1793-1804. doi: 10.1007/s10439-020-02490-4. Epub 2020 Mar 17.
6
Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method.
Int J Comput Assist Radiol Surg. 2018 Jul;13(7):977-986. doi: 10.1007/s11548-018-1758-y. Epub 2018 Apr 6.

本文引用的文献

1
Modelling skeletal muscle fibre orientation arrangement.
Comput Methods Biomech Biomed Engin. 2011 Dec;14(12):1079-88. doi: 10.1080/10255842.2010.509100. Epub 2011 Jun 24.
2
PhysiomeSpace: digital library service for biomedical data.
Philos Trans A Math Phys Eng Sci. 2010 Jun 28;368(1921):2853-61. doi: 10.1098/rsta.2010.0023.
3
A model of the lower limb for analysis of human movement.
Ann Biomed Eng. 2010 Feb;38(2):269-79. doi: 10.1007/s10439-009-9852-5. Epub 2009 Dec 3.
4
A transformation method to estimate muscle attachments based on three bony landmarks.
J Biomech. 2009 Feb 9;42(3):331-5. doi: 10.1016/j.jbiomech.2008.11.027. Epub 2009 Jan 10.
5
Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling.
Comput Methods Programs Biomed. 2008 Oct;92(1):8-19. doi: 10.1016/j.cmpb.2008.05.005. Epub 2008 Jul 7.
6
Model-based estimation of muscle forces exerted during movements.
Clin Biomech (Bristol). 2007 Feb;22(2):131-54. doi: 10.1016/j.clinbiomech.2006.09.005. Epub 2006 Oct 27.
7
The multimod application framework: a rapid application development tool for computer aided medicine.
Comput Methods Programs Biomed. 2007 Feb;85(2):138-51. doi: 10.1016/j.cmpb.2006.09.010. Epub 2006 Oct 23.
8
Three-dimensional representation of complex muscle architectures and geometries.
Ann Biomed Eng. 2005 May;33(5):661-73. doi: 10.1007/s10439-005-1433-7.
9
Estimating muscle attachment contours by transforming geometrical bone models.
J Biomech. 2004 Mar;37(3):263-73. doi: 10.1016/j.jbiomech.2003.08.005.
10
The Obstacle-Set Method for Representing Muscle Paths in Musculoskeletal Models.
Comput Methods Biomech Biomed Engin. 2000;3(1):1-30. doi: 10.1080/10255840008915251.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验