Suppr超能文献

一种使用优化和代理模型同时估计肌肉和关节接触力以及身体运动的计算框架。

A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.

作者信息

Eskinazi Ilan, Fregly Benjamin J

机构信息

Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, USA.

Department of Mechanical Engineering, Rice University, Houston, TX, USA.

出版信息

Med Eng Phys. 2018 Apr;54:56-64. doi: 10.1016/j.medengphy.2018.02.002. Epub 2018 Mar 2.

Abstract

Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion. We demonstrate the approach by performing two optimizations, one static and one dynamic, using a pelvis-leg musculoskeletal model undergoing a gait cycle. We observed convergence on the order of seconds for a static optimization time frame and on the order of minutes for an entire dynamic optimization. The presented framework may facilitate model-based efforts to predict how planned surgical or rehabilitation interventions will affect post-treatment joint and muscle function.

摘要

通过基于梯度的肌肉骨骼模型优化来同时估计肌肉激活、关节接触力和关节运动学,受到计算成本高昂且非平滑的关节接触和肌肉包裹算法的阻碍。我们提出了一个框架,该框架通过并行化和代理建模相结合的方式,同时加快计算速度并消除肌肉力优化中的非平滑源,特别强调一种将关节接触建模为静态分析代理模型的新方法。该方法允许在人体运动的静态和动态优化中有效地引入弹性关节接触模型。我们通过使用经历步态周期的骨盆 - 腿部肌肉骨骼模型进行一次静态优化和一次动态优化来演示该方法。我们观察到,对于静态优化时间框架,收敛时间约为几秒,而对于整个动态优化,收敛时间约为几分钟。所提出的框架可能有助于基于模型的工作,以预测计划的手术或康复干预将如何影响治疗后的关节和肌肉功能。

相似文献

2
A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb.
J Biomech. 2019 Feb 14;84:94-102. doi: 10.1016/j.jbiomech.2018.12.020. Epub 2018 Dec 28.
3
4
Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
Proc Inst Mech Eng H. 2018 May;232(5):508-519. doi: 10.1177/0954411918767695. Epub 2018 Apr 11.
6
An Open-Source Toolbox for Surrogate Modeling of Joint Contact Mechanics.
IEEE Trans Biomed Eng. 2016 Feb;63(2):269-77. doi: 10.1109/TBME.2015.2455510. Epub 2015 Jul 13.
7
Development and validation of a finite-element musculoskeletal model incorporating a deformable contact model of the hip joint during gait.
J Mech Behav Biomed Mater. 2021 Jan;113:104136. doi: 10.1016/j.jmbbm.2020.104136. Epub 2020 Oct 10.
10
Musculoskeletal model-based inverse dynamic analysis under ambulatory conditions using inertial motion capture.
Med Eng Phys. 2019 Mar;65:68-77. doi: 10.1016/j.medengphy.2018.12.021. Epub 2019 Feb 5.

引用本文的文献

2
3
4
From deep learning to transfer learning for the prediction of skeletal muscle forces.
Med Biol Eng Comput. 2019 May;57(5):1049-1058. doi: 10.1007/s11517-018-1940-y. Epub 2018 Dec 14.

本文引用的文献

3
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
Ann Biomed Eng. 2016 Oct;44(10):2922-2936. doi: 10.1007/s10439-016-1591-9. Epub 2016 Mar 21.
5
Surrogate modeling of deformable joint contact using artificial neural networks.
Med Eng Phys. 2015 Sep;37(9):885-91. doi: 10.1016/j.medengphy.2015.06.006. Epub 2015 Jul 26.
6
7
Contribution of tibiofemoral joint contact to net loads at the knee in gait.
J Orthop Res. 2015 Jul;33(7):1054-60. doi: 10.1002/jor.22845. Epub 2015 Mar 2.
8
A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
J Biomech Eng. 2015 Feb 1;137(2):020904. doi: 10.1115/1.4029258. Epub 2015 Jan 26.
9
Co-simulation of neuromuscular dynamics and knee mechanics during human walking.
J Biomech Eng. 2014 Feb;136(2):021033. doi: 10.1115/1.4026358.
10
Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
J Biomech Eng. 2014 Feb;136(2):021032. doi: 10.1115/1.4026359.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验