Zhang Xing, Herbert John M
Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.
J Phys Chem B. 2014 Jul 17;118(28):7806-17. doi: 10.1021/jp412092f. Epub 2014 Jan 24.
Excited-state deactivation mechanisms of uracil are investigated using spin-flip time-dependent density functional theory. Two important minimum-energy crossing points are located, for both gas-phase and hydrated uracil, and optimized relaxation pathways connecting the most important critical points on the (1)nπ* and (1)ππ* potential energy surfaces are determined. An ultrafast decay time constant, measured via femtosecond spectroscopy, is assigned to direct (1)ππ* → S0 deactivation, while a slower decay component is assigned to indirect (1)ππ* → (1)nπ* → S0 deactivation. The shorter lifetime of the dark (1)nπ* state in aqueous solution is attributed to a decrease in the energy barrier along the pathway connecting the (1)nπ* minimum to a (1)ππ*/S0 conical intersection. This barrier arises due to hydrogen bonding between uracil and water, leading to a blue-shift in the S0 → (1)nπ* excitation energy and considerable modification of energy barriers on the (1)nπ* potential surface. These results illustrate how hydrogen bonding to the chromophore can significantly impact excited-state dynamics and also highlight that relaxation pathways can be elucidated using low-cost methods based on density functional theory.
利用自旋翻转含时密度泛函理论研究了尿嘧啶的激发态失活机制。确定了气相和水合尿嘧啶的两个重要的最低能量交叉点,并确定了连接(1)nπ和(1)ππ势能面上最重要临界点的优化弛豫路径。通过飞秒光谱测量的超快衰减时间常数被归因于直接的(1)ππ*→S0失活,而较慢的衰减成分被归因于间接的(1)ππ*→(1)nπ*→S0失活。水溶液中暗态(1)nπ寿命较短归因于沿着连接(1)nπ最低点与(1)ππ*/S0锥形交叉点的路径上能垒的降低。这个能垒是由于尿嘧啶与水之间的氢键作用产生的,导致S0→(1)nπ激发能发生蓝移,并对(1)nπ势能面上的能垒产生相当大的改变。这些结果说明了与发色团的氢键作用如何能显著影响激发态动力学,同时也突出了可以使用基于密度泛函理论的低成本方法来阐明弛豫路径。