Carnegie Institution of Washington, 290 Panama Street, 94305, Stanford, California, USA.
Photosynth Res. 1988 Jul;17(1-2):23-56. doi: 10.1007/BF00047680.
Phycobilisomes, comprised of both chromophoric (phycobiliproteins) and non-chromophoric (linker polypeptides) proteins, are light-harvesting complexes present in the prokaryotic cyanobacteria and the eukaryotic red algae. Many cyanobacteria exhibit complementary chromatic adaptation, a process which enables these organisms to optimize absorption of prevalent wavelengths of light by altering the composition of the phycobilisome. To examine the mechanisms involved in adjusting the levels of phycobilisome components during complementary chromatic adaptation, we have isolated and sequenced genes encoding phycobiliprotein and linker polypeptides in the cyanobacterium Fremyella diplosiphon, analyzed their transcriptional characteristics (transcript sizes and abundance when F. diplosiphon is grown in different light qualities) and mapped transcript initiation and termination sites. Our results demonstrate that genes encoding phycobilisome components are often cotranscribed as polycistronic messenger RNAs. Light quality regulates the composition of the phycobilisome by causing changes in the abundance of transcripts encoding specific components, suggesting that regulation is at the level of transcription (although not eliminating the possibility of changes in mRNA stability). The work presented here sets the foundation for analyzing the evolution of the different phycobilisome components and exploring signal transduction from photoperception to activation of specific genes using in vivo and in vitro genetic technology.
藻胆体由发色团(藻胆蛋白)和非发色团(连接多肽)组成,是存在于原核蓝藻和真核红藻中的光收集复合物。许多蓝藻表现出互补色适应,这是一种通过改变藻胆体的组成来优化吸收流行光波长的过程。为了研究在互补色适应过程中调节藻胆体成分水平的机制,我们已经在蓝藻 Fremyella diplosiphon 中分离和测序了编码藻胆蛋白和连接多肽的基因,分析了它们的转录特征(当 Fremyella diplosiphon 在不同光照条件下生长时的转录大小和丰度),并绘制了转录起始和终止位点。我们的结果表明,编码藻胆体成分的基因通常作为多顺反子信使 RNA 共同转录。光照质量通过改变编码特定成分的转录本的丰度来调节藻胆体的组成,这表明调节是在转录水平上(尽管不能排除 mRNA 稳定性变化的可能性)。这里介绍的工作为分析不同藻胆体成分的进化以及使用体内和体外遗传技术探索从光感受到特定基因激活的信号转导奠定了基础。