Suppr超能文献

S6 激酶通过 AMP 激酶抑制秀丽隐杆线虫的固有轴突再生能力。

S6 kinase inhibits intrinsic axon regeneration capacity via AMP kinase in Caenorhabditis elegans.

机构信息

Division of Biological Sciences, Section of Neurobiology, and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093.

出版信息

J Neurosci. 2014 Jan 15;34(3):758-63. doi: 10.1523/JNEUROSCI.2886-13.2014.

Abstract

The ability of axons to regrow after injury is determined by the complex interplay of intrinsic growth programs and external cues. In Caenorhabditis elegans mechanosensory neuron, axons exhibit robust regenerative regrowth following laser axotomy. By surveying conserved metabolic signaling pathways, we have identified the ribosomal S6 kinase RSKS-1 as a new cell-autonomous inhibitor of axon regeneration. RSKS-1 is not required for axonal development but inhibits axon regrowth after injury in multiple neuron types. Loss of function in rsks-1 results in more rapid growth cone formation after injury and accelerates subsequent axon extension. The enhanced regrowth of rsks-1 mutants is partly dependent on the DLK-1 MAPK cascade. An essential output of RSKS-1 in axon regrowth is the metabolic sensor AMP kinase, AAK-2. We further show that the antidiabetic drug phenformin, which activates AMP kinase, can promote axon regrowth. Our data reveal a new function for an S6 kinase acting through an AMP kinase in regenerative growth of injured axons.

摘要

轴突在受伤后能否再生,取决于内在生长程序和外部线索的复杂相互作用。在秀丽隐杆线虫的机械感觉神经元中,轴突在激光切断后表现出强大的再生性生长。通过调查保守的代谢信号通路,我们已经确定核糖体 S6 激酶 RSKS-1 是轴突再生的新的细胞自主抑制剂。RSKS-1 不是轴突发育所必需的,但在多种神经元类型中抑制损伤后的轴突再生。rsks-1 的功能丧失会导致损伤后生长锥更快形成,并加速随后的轴突延伸。rsks-1 突变体的增强再生部分依赖于 DLK-1 MAPK 级联。RSKS-1 在轴突再生中的一个重要输出是代谢传感器 AMP 激酶 AAK-2。我们进一步表明,一种激活 AMP 激酶的抗糖尿病药物二甲双胍可以促进轴突再生。我们的数据揭示了 S6 激酶通过 AMP 激酶在损伤轴突的再生性生长中的新功能。

相似文献

1
S6 kinase inhibits intrinsic axon regeneration capacity via AMP kinase in Caenorhabditis elegans.
J Neurosci. 2014 Jan 15;34(3):758-63. doi: 10.1523/JNEUROSCI.2886-13.2014.
2
Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase.
J Neurosci. 2010 Mar 3;30(9):3175-83. doi: 10.1523/JNEUROSCI.5464-09.2010.
3
C. elegans S6K Mutants Require a Creatine-Kinase-like Effector for Lifespan Extension.
Cell Rep. 2016 Mar 8;14(9):2059-2067. doi: 10.1016/j.celrep.2016.02.012. Epub 2016 Feb 25.
4
Axon regeneration pathways identified by systematic genetic screening in C. elegans.
Neuron. 2011 Sep 22;71(6):1043-57. doi: 10.1016/j.neuron.2011.07.009. Epub 2011 Sep 21.
6
F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor.
J Neurosci. 2021 Mar 17;41(11):2373-2381. doi: 10.1523/JNEUROSCI.1024-20.2021. Epub 2021 Jan 29.
7
Functional Recovery Associated with Dendrite Regeneration in PVD Neuron of .
eNeuro. 2024 May 21;11(5). doi: 10.1523/ENEURO.0292-23.2024. Print 2024 May.
8
Axon regeneration requires a conserved MAP kinase pathway.
Science. 2009 Feb 6;323(5915):802-6. doi: 10.1126/science.1165527. Epub 2009 Jan 22.

引用本文的文献

1
The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems.
PLoS Biol. 2023 Apr 17;21(4):e3002044. doi: 10.1371/journal.pbio.3002044. eCollection 2023 Apr.
3
Regulation of UNC-40/DCC and UNC-6/Netrin by DAF-16 promotes functional rewiring of the injured axon.
Development. 2021 Jun 1;148(11). doi: 10.1242/dev.198044. Epub 2021 Jun 10.
4
Swimming Exercise Promotes Post-injury Axon Regeneration and Functional Restoration through AMPK.
eNeuro. 2021 Jun 16;8(3). doi: 10.1523/ENEURO.0414-20.2021. Print 2021 May-Jun.
5
PDK1 is a negative regulator of axon regeneration.
Mol Brain. 2021 Feb 12;14(1):31. doi: 10.1186/s13041-021-00748-z.
6
Axon Injury-Induced Autophagy Activation Is Impaired in a Model of Tauopathy.
Int J Mol Sci. 2020 Nov 13;21(22):8559. doi: 10.3390/ijms21228559.
7
Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH.
Autophagy. 2020 Nov;16(11):2052-2068. doi: 10.1080/15548627.2020.1713645. Epub 2020 Jan 13.
9
Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules.
Neuron. 2019 Oct 23;104(2):290-304.e8. doi: 10.1016/j.neuron.2019.07.004. Epub 2019 Aug 1.
10
The Application of Omics Technologies to Study Axon Regeneration and CNS Repair.
F1000Res. 2019 Mar 20;8. doi: 10.12688/f1000research.17084.1. eCollection 2019.

本文引用的文献

1
Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism.
Cell. 2013 Mar 28;153(1):228-39. doi: 10.1016/j.cell.2013.02.035.
2
Regulation of DLK-1 kinase activity by calcium-mediated dissociation from an inhibitory isoform.
Neuron. 2012 Nov 8;76(3):534-48. doi: 10.1016/j.neuron.2012.08.043.
3
Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration.
Dev Cell. 2012 Oct 16;23(4):716-28. doi: 10.1016/j.devcel.2012.08.010. Epub 2012 Sep 20.
4
Long-distance growth and connectivity of neural stem cells after severe spinal cord injury.
Cell. 2012 Sep 14;150(6):1264-73. doi: 10.1016/j.cell.2012.08.020.
5
The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans.
PLoS Biol. 2012;10(5):e1001331. doi: 10.1371/journal.pbio.1001331. Epub 2012 May 22.
6
Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7517-22. doi: 10.1073/pnas.1120684109. Epub 2012 Apr 23.
7
Notch signaling inhibits axon regeneration.
Neuron. 2012 Jan 26;73(2):268-78. doi: 10.1016/j.neuron.2011.11.017.
9
Axon regeneration pathways identified by systematic genetic screening in C. elegans.
Neuron. 2011 Sep 22;71(6):1043-57. doi: 10.1016/j.neuron.2011.07.009. Epub 2011 Sep 21.
10
Axon regeneration mechanisms: insights from C. elegans.
Trends Cell Biol. 2011 Oct;21(10):577-84. doi: 10.1016/j.tcb.2011.08.003. Epub 2011 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验