Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
Cell. 2012 Sep 14;150(6):1264-73. doi: 10.1016/j.cell.2012.08.020.
Neural stem cells (NSCs) expressing GFP were embedded into fibrin matrices containing growth factor cocktails and grafted to sites of severe spinal cord injury. Grafted cells differentiated into multiple cellular phenotypes, including neurons, which extended large numbers of axons over remarkable distances. Extending axons formed abundant synapses with host cells. Axonal growth was partially dependent on mammalian target of rapamycin (mTOR), but not Nogo signaling. Grafted neurons supported formation of electrophysiological relays across sites of complete spinal transection, resulting in functional recovery. Two human stem cell lines (566RSC and HUES7) embedded in growth-factor-containing fibrin exhibited similar growth, and 566RSC cells supported functional recovery. Thus, properties intrinsic to early-stage neurons can overcome the inhibitory milieu of the injured adult spinal cord to mount remarkable axonal growth, resulting in formation of new relay circuits that significantly improve function. These therapeutic properties extend across stem cell sources and species.
神经干细胞(NSCs)表达 GFP 并嵌入含有生长因子鸡尾酒的纤维蛋白基质中,然后移植到严重脊髓损伤的部位。移植的细胞分化为多种细胞表型,包括神经元,其可在显著的距离内延伸大量轴突。延伸的轴突与宿主细胞形成大量的突触。轴突的生长部分依赖于哺乳动物雷帕霉素靶蛋白(mTOR),但不依赖于 Nogo 信号。移植的神经元支持在完全脊髓横断部位形成电生理中继,从而实现功能恢复。两种人干细胞系(566RSC 和 HUES7)嵌入含有生长因子的纤维蛋白中表现出相似的生长,并且 566RSC 细胞支持功能恢复。因此,早期神经元固有的特性可以克服受伤成年脊髓的抑制环境,实现显著的轴突生长,从而形成新的中继电路,显著改善功能。这些治疗特性扩展到不同的干细胞来源和物种。
Prog Brain Res. 2017
Neurosci Lett. 2017-6-23
Front Cell Dev Biol. 2025-7-3
J Extracell Vesicles. 2025-7
Mol Biol Rep. 2025-7-3
Int J Mol Sci. 2025-5-23
Nat Rev Neurol. 2011-12-13
Nat Neurosci. 2010-11-14
Nat Neurosci. 2010-8-8
J Neuropathol Exp Neurol. 2009-7