Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Bioinspir Biomim. 2014 Mar;9(1):016007. doi: 10.1088/1748-3182/9/1/016007. Epub 2014 Jan 16.
We describe the design and control of a wearable robotic device powered by pneumatic artificial muscle actuators for use in ankle-foot rehabilitation. The design is inspired by the biological musculoskeletal system of the human foot and lower leg, mimicking the morphology and the functionality of the biological muscle-tendon-ligament structure. A key feature of the device is its soft structure that provides active assistance without restricting natural degrees of freedom at the ankle joint. Four pneumatic artificial muscles assist dorsiflexion and plantarflexion as well as inversion and eversion. The prototype is also equipped with various embedded sensors for gait pattern analysis. For the subject tested, the prototype is capable of generating an ankle range of motion of 27° (14° dorsiflexion and 13° plantarflexion). The controllability of the system is experimentally demonstrated using a linear time-invariant (LTI) controller. The controller is found using an identified LTI model of the system, resulting from the interaction of the soft orthotic device with a human leg, and model-based classical control design techniques. The suitability of the proposed control strategy is demonstrated with several angle-reference following experiments.
我们描述了一种由气动人工肌肉驱动器驱动的可穿戴机器人设备的设计和控制,该设备用于踝关节 - 足康复。该设计受到人类足部和小腿的生物肌肉骨骼系统的启发,模仿了生物肌肉 - 肌腱 - 韧带结构的形态和功能。该设备的一个关键特点是其软结构,它在不限制踝关节自然自由度的情况下提供主动辅助。四个气动人工肌肉辅助背屈和跖屈以及内翻和外翻。原型机还配备了各种嵌入式传感器,用于步态模式分析。对于测试的对象,原型机能够产生 27°的踝关节运动范围(14°背屈和 13°跖屈)。系统的可控性通过使用线性时不变(LTI)控制器进行实验证明。该控制器是使用系统的已识别 LTI 模型找到的,该模型是由软矫形器与人体腿部的相互作用以及基于模型的经典控制设计技术产生的。通过几个角度参考跟随实验证明了所提出的控制策略的适用性。