Suppr超能文献

变量变化下的热力学熵与微分熵

Thermodynamic and Differential Entropy under a Change of Variables.

作者信息

Hnizdo Vladimir, Gilson Michael K

机构信息

Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.

Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.

出版信息

Entropy (Basel). 2010 Mar 16;12(3):578-590. doi: 10.3390/e12030578.

Abstract

The differential Shannon entropy of information theory can change under a change of variables (coordinates), but the thermodynamic entropy of a physical system must be invariant under such a change. This difference is puzzling, because the Shannon and Gibbs entropies have the same functional form. We show that a canonical change of variables can, indeed, alter the spatial component of the thermodynamic entropy just as it alters the differential Shannon entropy. However, there is also a momentum part of the entropy, which turns out to undergo an equal and opposite change when the coordinates are transformed, so that the total thermodynamic entropy remains invariant. We furthermore show how one may correctly write the change in total entropy for an isothermal physical process in any set of spatial coordinates.

摘要

信息论中的微分香农熵在变量(坐标)变化时会改变,但物理系统的热力学熵在这种变化下必须保持不变。这种差异令人困惑,因为香农熵和吉布斯熵具有相同的函数形式。我们表明,正则变量变换确实可以改变热力学熵的空间分量,就像它改变微分香农熵一样。然而,熵还有一个动量部分,当坐标变换时,它会发生大小相等、方向相反的变化,从而使总热力学熵保持不变。我们还展示了如何在任何一组空间坐标中正确写出等温物理过程的总熵变化。

相似文献

1
Thermodynamic and Differential Entropy under a Change of Variables.
Entropy (Basel). 2010 Mar 16;12(3):578-590. doi: 10.3390/e12030578.
3
Entropy of the Canonical Occupancy (Macro) State in the Quantum Measurement Theory.
Entropy (Basel). 2024 Jan 24;26(2):107. doi: 10.3390/e26020107.
4
Axiomatic Relation between Thermodynamic and Information-Theoretic Entropies.
Phys Rev Lett. 2016 Dec 23;117(26):260601. doi: 10.1103/PhysRevLett.117.260601. Epub 2016 Dec 22.
5
Equivalence between four versions of thermostatistics based on strongly pseudoadditive entropies.
Phys Rev E. 2019 Dec;100(6-1):062135. doi: 10.1103/PhysRevE.100.062135.
6
Shannon Entropy in LS-Coupled Configuration Space for Ni-like Isoelectronic Sequence.
Entropy (Basel). 2022 Feb 12;24(2):267. doi: 10.3390/e24020267.
7
Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs-Shannon form.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11097-11102. doi: 10.1073/pnas.1708689114. Epub 2017 Oct 3.
8
Shannon information entropy in the canonical genetic code.
J Theor Biol. 2017 Feb 21;415:158-170. doi: 10.1016/j.jtbi.2016.12.010. Epub 2016 Dec 20.
9
Family of additive entropy functions out of thermodynamic limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016104. doi: 10.1103/PhysRevE.67.016104. Epub 2003 Jan 16.
10
Shannon-entropy-based nonequilibrium "entropic" temperature of a general distribution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Mar;85(3 Pt 1):031151. doi: 10.1103/PhysRevE.85.031151. Epub 2012 Mar 30.

引用本文的文献

1
Physical Chemistry of the Protein Backbone: Enabling the Mechanisms of Intrinsic Protein Disorder.
J Phys Chem B. 2020 Jun 4;124(22):4379-4390. doi: 10.1021/acs.jpcb.0c02489. Epub 2020 May 14.
2
Configurational Entropy Components and Their Contribution to Biomolecular Complex Formation.
J Chem Theory Comput. 2019 Jun 11;15(6):3844-3853. doi: 10.1021/acs.jctc.8b01254. Epub 2019 May 14.
3
Thermodynamics of Conformational Transitions in a Disordered Protein Backbone Model.
Biophys J. 2018 Jun 19;114(12):2799-2810. doi: 10.1016/j.bpj.2018.04.027.
4
Self-Consistent Framework Connecting Experimental Proxies of Protein Dynamics with Configurational Entropy.
J Chem Theory Comput. 2018 Jul 10;14(7):3796-3810. doi: 10.1021/acs.jctc.8b00100. Epub 2018 Jun 8.
5
A new mathematical evaluation of smoking problem based of algebraic statistical method.
Saudi J Biol Sci. 2016 Jan;23(1):S11-5. doi: 10.1016/j.sjbs.2015.08.015. Epub 2015 Sep 1.
6
Estimation of Solvation Entropy and Enthalpy via Analysis of Water Oxygen-Hydrogen Correlations.
J Chem Theory Comput. 2015 Nov 10;11(11):5090-102. doi: 10.1021/acs.jctc.5b00439. Epub 2015 Oct 21.
7
Distance-Based Configurational Entropy of Proteins from Molecular Dynamics Simulations.
PLoS One. 2015 Jul 15;10(7):e0132356. doi: 10.1371/journal.pone.0132356. eCollection 2015.
8
Correlation as a determinant of configurational entropy in supramolecular and protein systems.
J Phys Chem B. 2014 Jun 19;118(24):6447-55. doi: 10.1021/jp411588b. Epub 2014 Apr 18.
9
Fixman compensating potential for general branched molecules.
J Chem Phys. 2013 Dec 28;139(24):244103. doi: 10.1063/1.4851315.
10
Efficient Computation of Small-Molecule Configurational Binding Entropy and Free Energy Changes by Ensemble Enumeration.
J Chem Theory Comput. 2013 Nov 12;9(11):5098-5115. doi: 10.1021/ct400383v. Epub 2013 Aug 7.

本文引用的文献

2
3
The statistical-thermodynamic basis for computation of binding affinities: a critical review.
Biophys J. 1997 Mar;72(3):1047-69. doi: 10.1016/S0006-3495(97)78756-3.
4
The entropy of a continuous distribution.
Bull Math Biophys. 1965;27:Suppl:135-43. doi: 10.1007/BF02477270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验