Suppr超能文献

无序蛋白质骨架模型中构象转变的热力学。

Thermodynamics of Conformational Transitions in a Disordered Protein Backbone Model.

机构信息

Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas.

Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas.

出版信息

Biophys J. 2018 Jun 19;114(12):2799-2810. doi: 10.1016/j.bpj.2018.04.027.

Abstract

Conformational entropy is expected to contribute significantly to the thermodynamics of structural transitions in intrinsically disordered proteins or regions in response to protein/ligand binding, posttranslational modifications, and environmental changes. We calculated the backbone (dihedral) conformational entropy of oligoglycine (Gly), a protein backbone mimic and model intrinsically disordered region, as a function of chain length (N=3, 4, 5, 10, and 15) from simulations using three different approaches. The backbone conformational entropy scales linearly with chain length with a slope consistent with the entropy of folding of well-structured proteins. The entropic contributions of second-order dihedral correlations are predominantly through intraresidue ϕ-ψ pairs, suggesting that oligoglycine may be thermodynamically modeled as a system of independent glycine residues. We find the backbone conformational entropy to be largely independent of global structural parameters, like the end-to-end distance and radius of gyration. We introduce a framework referred to herein as "ensemble confinement" to estimate the loss (gain) of conformational free energy and its entropic component when individual residues are constrained to (released from) particular regions of the ϕ-ψ map. Quantitatively, we show that our protein backbone model resists ordering/folding with a significant, unfavorable ensemble confinement free energy because of the loss of a substantial portion of the absolute backbone entropy. Proteins can couple this free-energy reservoir to distal binding events as a regulatory mechanism to promote or suppress binding.

摘要

构象熵有望对无规卷曲蛋白质或区域的结构转变热力学产生重大影响,这些转变是响应蛋白质/配体结合、翻译后修饰和环境变化而发生的。我们计算了寡聚甘氨酸(Gly)的主链(二面角)构象熵,这是一种蛋白质主链模拟物和无规卷曲区域模型,作为模拟的函数,模拟使用了三种不同的方法,链长(N=3、4、5、10 和 15)。主链构象熵与链长呈线性关系,斜率与结构良好蛋白质的折叠熵一致。二阶二面角相关的熵贡献主要通过残基内的 ϕ-ψ 对,这表明寡聚甘氨酸可能可以被热力学模拟为独立甘氨酸残基的系统。我们发现主链构象熵在很大程度上独立于全局结构参数,如末端到末端的距离和回转半径。我们引入了一个称为“集合限制”的框架,以估计当单个残基被限制(释放)到 ϕ-ψ 图谱的特定区域时,构象自由能及其熵分量的损失(获得)。定量地,我们表明我们的蛋白质主链模型由于绝对主链熵的大量损失而抵抗有序/折叠,这是由于集合限制自由能的显著不利。蛋白质可以将这个自由能库与远距离结合事件耦合,作为促进或抑制结合的调节机制。

相似文献

4
The Thermodynamic Basis of the Fuzzy Interaction of an Intrinsically Disordered Protein.无序蛋白质的模糊相互作用的热力学基础。
Angew Chem Int Ed Engl. 2017 Nov 13;56(46):14494-14497. doi: 10.1002/anie.201707853. Epub 2017 Oct 10.
9
Dihedral angle entropy measures for intrinsically disordered proteins.内在无序蛋白质的二面角熵度量
J Phys Chem B. 2015 Mar 5;119(9):3621-34. doi: 10.1021/jp5102412. Epub 2015 Feb 25.

引用本文的文献

1
Peptide diffusion in biomolecular condensates.肽在生物分子凝聚物中的扩散。
Biophys J. 2024 Jun 18;123(12):1668-1675. doi: 10.1016/j.bpj.2024.05.009. Epub 2024 May 15.
2
Effects of Conformational Constraint on Peptide Solubility Limits.构象约束对肽溶解度极限的影响。
J Phys Chem B. 2022 Dec 15;126(49):10510-10518. doi: 10.1021/acs.jpcb.2c06458. Epub 2022 Nov 30.
4
Thermodynamic Compensation in Peptides Following Liquid-Liquid Phase Separation.液-液相分离后肽的热力学补偿。
J Phys Chem B. 2021 Jun 24;125(24):6431-6439. doi: 10.1021/acs.jpcb.1c02093. Epub 2021 Jun 10.
8
Proteasome Activation to Combat Proteotoxicity.蛋白酶体激活以对抗蛋白毒性。
Molecules. 2019 Aug 5;24(15):2841. doi: 10.3390/molecules24152841.

本文引用的文献

1
Force field development and simulations of intrinsically disordered proteins.力场开发与无规卷曲蛋白质模拟。
Curr Opin Struct Biol. 2018 Feb;48:40-48. doi: 10.1016/j.sbi.2017.10.008. Epub 2017 Nov 5.
3
Entropy in molecular recognition by proteins.蛋白质分子识别中的熵。
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6563-6568. doi: 10.1073/pnas.1621154114. Epub 2017 Jun 5.
4
Disordered allostery: lessons from glucocorticoid receptor.紊乱的变构作用:来自糖皮质激素受体的教训
Biophys Rev. 2015 Jun;7(2):257-265. doi: 10.1007/s12551-015-0173-7. Epub 2015 Apr 23.
6
Entropy redistribution controls allostery in a metalloregulatory protein.熵重分配控制金属调控蛋白的变构。
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4424-4429. doi: 10.1073/pnas.1620665114. Epub 2017 Mar 27.
7
Computational Methods for Configurational Entropy Using Internal and Cartesian Coordinates.使用内坐标和笛卡尔坐标计算构型熵的方法
J Chem Theory Comput. 2016 Dec 13;12(12):5990-6000. doi: 10.1021/acs.jctc.6b00563. Epub 2016 Dec 2.
8
DisProt 7.0: a major update of the database of disordered proteins.DisProt 7.0:无序蛋白质数据库的重大更新。
Nucleic Acids Res. 2017 Jan 4;45(D1):D219-D227. doi: 10.1093/nar/gkw1056. Epub 2016 Nov 28.
10
Order, Disorder, and Everything in Between.有序、无序以及其间的一切。
Molecules. 2016 Aug 19;21(8):1090. doi: 10.3390/molecules21081090.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验