Suppr超能文献

一种用于动态优化问题的自适应多群体优化器。

An adaptive multi-swarm optimizer for dynamic optimization problems.

作者信息

Li Changhe, Yang Shengxiang, Yang Ming

机构信息

School of Computer Science, China University of Geosciences, Wuhan 430074, China

出版信息

Evol Comput. 2014 Winter;22(4):559-94. doi: 10.1162/EVCO_a_00117.

Abstract

The multipopulation method has been widely used to solve dynamic optimization problems (DOPs) with the aim of maintaining multiple populations on different peaks to locate and track multiple changing optima simultaneously. However, to make this approach effective for solving DOPs, two challenging issues need to be addressed. They are how to adapt the number of populations to changes and how to adaptively maintain the population diversity in a situation where changes are complicated or hard to detect or predict. Tracking the changing global optimum in dynamic environments is difficult because we cannot know when and where changes occur and what the characteristics of changes would be. Therefore, it is necessary to take these challenging issues into account in designing such adaptive algorithms. To address the issues when multipopulation methods are applied for solving DOPs, this paper proposes an adaptive multi-swarm algorithm, where the populations are enabled to be adaptive in dynamic environments without change detection. An experimental study is conducted based on the moving peaks problem to investigate the behavior of the proposed method. The performance of the proposed algorithm is also compared with a set of algorithms that are based on multipopulation methods from different research areas in the literature of evolutionary computation.

摘要

多群体方法已被广泛用于解决动态优化问题(DOP),其目的是在不同峰值上维持多个群体,以便同时定位和跟踪多个变化的最优解。然而,为使该方法有效解决DOP,需要解决两个具有挑战性的问题。它们是如何使群体数量适应变化,以及在变化复杂、难以检测或预测的情况下如何自适应地维持群体多样性。在动态环境中跟踪变化的全局最优解很困难,因为我们不知道变化何时何地发生以及变化的特征是什么。因此,在设计此类自适应算法时,有必要考虑这些具有挑战性的问题。为解决将多群体方法应用于求解DOP时出现的问题,本文提出一种自适应多群体算法,该算法能使群体在无变化检测的动态环境中具有适应性。基于移动峰值问题进行了实验研究,以考察所提方法的性能。还将所提算法的性能与进化计算文献中不同研究领域基于多群体方法的一组算法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验