Suppr超能文献

一种用于大规模鉴定复杂翻译后修饰的交钥匙方法。

A turn-key approach for large-scale identification of complex posttranslational modifications.

机构信息

Bioinformatics Program, ∥Skaggs School of Pharmacy and Pharmaceutical Sciences, ⊥Center for Computational Mass Spectrometry, and ¶Department of Computer Science and Engineering, University of California, San Diego , La Jolla, California 92093, United States.

出版信息

J Proteome Res. 2014 Mar 7;13(3):1190-9. doi: 10.1021/pr400368u. Epub 2014 Jan 29.

Abstract

The conjugation of complex post-translational modifications (PTMs) such as glycosylation and Small Ubiquitin-like Modification (SUMOylation) to a substrate protein can substantially change the resulting peptide fragmentation pattern compared to its unmodified counterpart, making current database search methods inappropriate for the identification of tandem mass (MS/MS) spectra from such modified peptides. Traditionally it has been difficult to develop new algorithms to identify these atypical peptides because of the lack of a large set of annotated spectra from which to learn the altered fragmentation pattern. Using SUMOylation as an example, we propose a novel approach to generate large MS/MS training data from modified peptides and derive an algorithm that learns properties of PTM-specific fragmentation from such training data. Benchmark tests on data sets of varying complexity show that our method is 80-300% more sensitive than current state-of-the-art approaches. The core concepts of our method are readily applicable to developing algorithms for the identifications of peptides with other complex PTMs.

摘要

与未修饰的对应物相比,复杂的翻译后修饰(PTMs)如糖基化和小泛素样修饰(SUMOylation)与底物蛋白的缀合可以显著改变所得肽段的碎裂模式,使得当前的数据库搜索方法不适合于鉴定此类修饰肽的串联质谱(MS/MS)谱。由于缺乏大量注释的光谱来学习改变的碎裂模式,因此传统上很难开发新的算法来识别这些非典型肽。以 SUMOylation 为例,我们提出了一种从修饰肽生成大量 MS/MS 训练数据的新方法,并开发了一种从这种训练数据中学习 PTM 特异性碎裂特性的算法。在不同复杂度的数据集上的基准测试表明,我们的方法比当前最先进的方法敏感 80-300%。我们方法的核心概念很容易适用于开发用于鉴定具有其他复杂 PTM 的肽的算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8d9/3993922/9beab13811ec/pr-2013-00368u_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验