Suppr超能文献

检测经翻译后修饰肽的 MS/MS 谱中的诊断特征。

Detecting diagnostic features in MS/MS spectra of post-translationally modified peptides.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Pathology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nat Commun. 2023 Jul 12;14(1):4132. doi: 10.1038/s41467-023-39828-0.

Abstract

Post-translational modifications are an area of great interest in mass spectrometry-based proteomics, with a surge in methods to detect them in recent years. However, post-translational modifications can introduce complexity into proteomics searches by fragmenting in unexpected ways, ultimately hindering the detection of modified peptides. To address these deficiencies, we present a fully automated method to find diagnostic spectral features for any modification. The features can be incorporated into proteomics search engines to improve modified peptide recovery and localization. We show the utility of this approach by interrogating fragmentation patterns for a cysteine-reactive chemoproteomic probe, RNA-crosslinked peptides, sialic acid-containing glycopeptides, and ADP-ribosylated peptides. We also analyze the interactions between a diagnostic ion's intensity and its statistical properties. This method has been incorporated into the open-search annotation tool PTM-Shepherd and the FragPipe computational platform.

摘要

翻译后处理修饰是基于质谱的蛋白质组学中非常感兴趣的一个领域,近年来出现了许多检测这些修饰的方法。然而,翻译后处理修饰会通过意想不到的方式碎片化,从而给蛋白质组学搜索带来复杂性,最终阻碍修饰肽的检测。为了解决这些不足,我们提出了一种全自动的方法,用于为任何修饰找到诊断谱特征。这些特征可以被整合到蛋白质组学搜索引擎中,以提高修饰肽的恢复和定位。我们通过询问半胱氨酸反应性化学蛋白质组探针、RNA 交联肽、含有唾液酸的糖肽和 ADP-核糖基化肽的片段化模式来展示这种方法的实用性。我们还分析了诊断离子强度与其统计特性之间的相互作用。这种方法已经被整合到开放搜索注释工具 PTM-Shepherd 和 FragPipe 计算平台中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/124a/10338467/c204d0ea8936/41467_2023_39828_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验