Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, Universitetsparken 15, København Ø DK-2100, Denmark.
Front Zool. 2014 Jan 17;11(1):6. doi: 10.1186/1742-9994-11-6.
The mismatch between dorsal and ventral trunk features along the millipede trunk was long a subject of controversy, largely resting on alternative interpretations of segmentation. Most models of arthropod segmentation presuppose a strict sequential antero-posterior specification of trunk segments, whereas alternative models involve the early delineation of a limited number of 'primary segments' followed by their sequential stereotypic subdivision into 2n definitive segments. The 'primary segments' should be intended as units identified by molecular markers, rather than as overt morphological entities. Two predictions were suggested to test the plausibility of multiple-duplication models of segmentation: first, a specific pattern of evolvability of segment number in those arthropod clades in which segment number is not fixed (e.g., epimorphic centipedes and millipedes); second, the occurrence of discrete multisegmental patterns due to early, initially contiguous positional markers.
We describe a unique case of a homeotic millipede with 6 extra pairs of ectopic gonopods replacing walking legs on rings 8 (leg-pairs 10-11), 15 (leg-pairs 24-25) and 16 (leg-pairs 26-27); we discuss the segmental distribution of these appendages in the framework of alternative models of segmentation and present an interpretation of the origin of the distribution of the additional gonopods.The anterior set of contiguous gonopods (those normally occurring on ring 7 plus the first set of ectopic ones on ring 8) is reiterated by the posterior set (on rings 15-16) after exactly 16 leg positions along the AP body axis. This suggests that a body section including 16 leg pairs could be a module deriving from 4 cycles of regular binary splitting of an embryonic 'primary segment'.
A very likely early determination of the sites of the future metamorphosis of walking legs into gonopods and a segmentation process according to the multiplicative model may provide a detailed explanation for the distribution of the extra gonopods in the homeotic specimen. The hypothesized steps of segmentation are similar in both a normal and the studied homeotic specimen. The difference between them would consist in the size of the embryonic trunk region endowed with a positional marker whose presence will later determine the replacement of walking legs by gonopods.
多足类动物躯干背面和腹面特征之间的不匹配一直是一个有争议的问题,主要是基于对分节的不同解释。大多数节肢动物分节模型都假设严格的前后顺序来指定躯干节段,而替代模型则涉及早期划定有限数量的“原始节段”,然后它们顺序地定型为 2n 个确定的节段。“原始节段”应该被认为是通过分子标记识别的单位,而不是明显的形态实体。为了测试分段的多次复制模型的合理性,提出了两个预测:首先,在那些节段数不是固定的节肢动物类群中,节段数的特定进化模式(例如,外胚层蜈蚣和千足虫);其次,由于早期的、最初连续的位置标记,出现离散的多节段模式。
我们描述了一个独特的同源多足动物的例子,它有 6 对额外的生殖肢代替第 8 环(腿对 10-11)、15 环(腿对 24-25)和 16 环(腿对 26-27)的行走腿;我们讨论了这些附肢在替代分节模型中的节段分布,并对额外生殖肢分布的起源提出了一种解释。前一组连续的生殖肢(通常出现在第 7 环上加上第 8 环上的第一组外生生殖肢)在后一组(第 15-16 环上)沿着 AP 体轴正好重复 16 次腿的位置。这表明包括 16 对腿的身体部分可能是源自胚胎“原始节段”4 次规则二分分裂的模块。
很可能早期确定未来行走腿向生殖肢转变的部位,并根据乘法模型进行分节过程,可能为同源多足动物标本中额外生殖肢的分布提供详细解释。在正常和研究的同源多足动物标本中,所假设的分节步骤是相似的。它们之间的区别在于具有位置标记的胚胎躯干区域的大小,该标记的存在将决定以后用生殖肢取代行走腿。