National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, UK.
Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.
Am J Hum Genet. 2014 Feb 6;94(2):278-87. doi: 10.1016/j.ajhg.2013.12.012. Epub 2014 Jan 16.
Glycosylphophatidylinositol (GPI)-anchored proteins play important roles in many biological processes, and mutations affecting proteins involved in the synthesis of the GPI anchor are reported to cause a wide spectrum of intellectual disabilities (IDs) with characteristic additional phenotypic features. Here, we describe a total of five individuals (from three unrelated families) in whom we identified mutations in PGAP3, encoding a protein that is involved in GPI-anchor maturation. Three siblings in a consanguineous Pakistani family presented with profound developmental delay, severe ID, no speech, psychomotor delay, and postnatal microcephaly. A combination of autozygosity mapping and exome sequencing identified a 13.8 Mb region harboring a homozygous c.275G>A (p.Gly92Asp) variant in PGAP3 region 17q11.2-q21.32. Subsequent testing showed elevated serum alkaline phosphatase (ALP), a GPI-anchored enzyme, in all three affected children. In two unrelated individuals in a cohort with developmental delay, ID, and elevated ALP, we identified compound-heterozygous variants c.439dupC (p.Leu147Profs(∗)16) and c.914A>G (p.Asp305Gly) and homozygous variant c.314C>G (p.Pro105Arg). The 1 bp duplication causes a frameshift and nonsense-mediated decay. Further evidence supporting pathogenicity of the missense mutations c.275G>A, c.314C>G, and c.914A>G was provided by the absence of the variants from ethnically matched controls, phylogenetic conservation, and functional studies on Chinese hamster ovary cell lines. Taken together with recent data on PGAP2, these results confirm the importance of the later GPI-anchor remodelling steps for normal neuronal development. Impairment of PGAP3 causes a subtype of hyperphosphatasia with ID, a congenital disorder of glycosylation that is also referred to as Mabry syndrome.
糖基磷脂酰肌醇(GPI)锚定蛋白在许多生物过程中发挥着重要作用,据报道,影响 GPI 锚合成的蛋白突变会导致广泛的智力障碍(ID),伴有特征性的额外表型特征。在这里,我们总共描述了五名个体(来自三个无关家庭),我们在这些个体中发现了参与 GPI-锚成熟的 PGAP3 编码蛋白的突变。一个巴基斯坦近亲家庭中的三个兄弟姐妹表现为严重的发育迟缓、严重的智力障碍、无言语、运动发育迟缓,以及出生后小头畸形。通过自交系作图和外显子组测序的组合,我们在 17q11.2-q21.32 区域发现了一个包含 PGAP3 区域纯合 c.275G>A(p.Gly92Asp)变异的 13.8Mb 区域。随后的测试显示,所有三名受影响的儿童的血清碱性磷酸酶(ALP)升高,ALP 是一种 GPI 锚定酶。在另外两个具有发育迟缓、智力障碍和 ALP 升高的队列中的无关个体中,我们发现了复合杂合变异 c.439dupC(p.Leu147Profs(∗)16)和 c.914A>G(p.Asp305Gly)以及纯合变异 c.314C>G(p.Pro105Arg)。1bp 重复导致移码和无意义介导的衰变。c.275G>A、c.314C>G 和 c.914A>G 错义突变的致病性进一步证据来自于与种族匹配的对照中不存在这些变异、系统发生保守性以及对中国仓鼠卵巢细胞系的功能研究。与最近关于 PGAP2 的数据相结合,这些结果证实了后期 GPI-锚重塑步骤对正常神经元发育的重要性。PGAP3 的功能丧失会导致伴有智力障碍的高磷酸酶血症 ID 亚型,这是一种先天性糖基化障碍,也称为 Mabry 综合征。