Suppr超能文献

系统列表化结果研究矩阵(STORM):一种生成研究假设的方法。

Systematically Tabulated Outcomes Research Matrix (STORM): a methodology to generate research hypotheses.

作者信息

Crompton Joseph G, Oyetunji Tolulope A, Haut Elliott R, Cornwell Edward E, Haider Adil H

机构信息

Department of Surgery, University of California-Los Angeles, Los Angeles, CA.

Department of Surgery, Howard University College of Medicine, Washington, DC.

出版信息

Surgery. 2014 Mar;155(3):541-4. doi: 10.1016/j.surg.2013.10.018. Epub 2013 Oct 14.

Abstract

BACKGROUND

Here we describe the Systematically Tabulated Outcomes Research Matrix (STORM) method to generate research questions from pre-existing databases with the aim of improving patient outcomes.

MATERIALS AND METHODS

STORM can be applied to a database by tabulating its variables into a matrix of independent variables (y-axis) and dependent variables (x-axis) and then applying each unique pairing of an independent and dependent variable to a patient population to generate potentially meaningful research questions.

RESULTS

To demonstrate this methodology and establish proof-of-principle, STORM was applied on a small scale to the National Trauma Data Bank and generated at least seven clinically meaningful research questions.

CONCLUSION

When coupled with rigorous clinical judgment, the STORM approach complements the traditional method of hypothesis formation and can be generalized to outcomes research using registry databases across different medical specialties.

摘要

背景

在此,我们描述了系统列表化结局研究矩阵(STORM)方法,旨在从现有数据库中生成研究问题,以改善患者结局。

材料与方法

STORM可应用于数据库,方法是将其变量列表化为一个自变量(纵轴)和因变量(横轴)的矩阵,然后将自变量和因变量的每一种独特配对应用于患者群体,以生成潜在有意义的研究问题。

结果

为了证明这种方法并建立原理验证,STORM在国家创伤数据库上进行了小规模应用,并生成了至少七个具有临床意义的研究问题。

结论

当与严格的临床判断相结合时,STORM方法补充了传统的假设形成方法,并且可以推广到使用不同医学专业登记数据库的结局研究中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验