Biomedical Engineering Program, University of Science and Technology of China, Hefei, People's Republic of China.
J Neural Eng. 2014 Feb;11(1):016011. doi: 10.1088/1741-2560/11/1/016011. Epub 2014 Jan 20.
This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline.
Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects.
Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups.
The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.
本研究探索了在表面肌电图(EMG)基线中检测隐藏肌肉活动的可行性。
采用功率谱密度(PSD)分析和多尺度熵(MSE)分析。这两种分析方法均应用于表面 EMG 基线的计算机模拟,其中包括存在(代表活动数据)或不存在(代表参考数据)隐藏肌肉活动的情况,以及健康对照和肌萎缩侧索硬化(ALS)患者的表面电极阵列 EMG 基线记录。
尽管模拟参考数据和活动数据在时域上没有可区分的差异,但在频域和信号复杂度方面,PSD 和 MSE 分析显示出显著差异。对于使用汇总数据的比较,当 PSD 和 MSE 分析应用于健康对照和 ALS 患者的表面电极阵列 EMG 基线记录时,也观察到了这种差异,而在时域上没有可区分的差异。与 PSD 分析相比,MSE 分析似乎更能敏感地检测出两组表面 EMG 基线之间的差异。
这些发现表明 ALS 患者的表面 EMG 基线记录中存在隐藏的肌肉活动。为了促进该分析作为一种有用的诊断或研究工具,未来的研究需要评估隐藏肌肉活动的病理生理性质或来源,以及个体患者水平的基线差异。