DeBiasio R, Bright G R, Ernst L A, Waggoner A S, Taylor D L
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
J Cell Biol. 1987 Oct;105(4):1613-22. doi: 10.1083/jcb.105.4.1613.
Cellular functions involve the temporal and spatial interplay of ions, metabolites, macromolecules, and organelles. To define the mechanisms responsible for completing cellular functions, we used methods that can yield both temporal and spatial information on multiple physiological parameters and chemical components in the same cell. We demonstrated that the combined use of selected fluorescent probes, fluorescence microscopy, and imaging methods can yield information on at least five separate cellular parameters and components in the same living cell. Furthermore, the temporal and spatial dynamics of each of the parameters and/or components can be correlated with one or more of the others. Five parameters were investigated by spectrally isolating defined regions of the ultraviolet, visible, and near-infrared spectrum based on five distinct fluorescent probes. The parameters included nuclei (Hoechst 33342), mitochondria (diIC1-[5] ), endosomes (lissamine rhodamine B-dextran), actin (fluorescein), and the cell volume Cy7-dextran). Nonmotile, confluent Swiss 3T3 cells did not show any detectable polarity of cell shape, or distribution of nuclei, endosomes, or mitochondria. These cells also organized a large percentage of the actin into stress fibers. In contrast, cells migrating into an in vitro wound exhibited at least two stages of reorganization of organelles and cytoplasm. During the first 3 h after wounding, the cells along the edge of the wound assumed a polarized shape, carried the nuclei in the rear of the cells, excluded endosomes and mitochondria from the lamellipodia, and lost most of the highly organized stress fibers. The cell showed a dramatic change between 3 and 7 h after producing the wound. The cells became highly elongated and motile; both the endosomes and the mitochondria penetrated into the lamellipodia, while the nuclei remained in the rear and the actin remained in less organized structures. Defining the temporal and spatial dynamics and interplay of ions, contractile proteins, lipids, regulatory proteins, metabolites, and organelles should lead to an understanding of the molecular basis of cell migration, as well as other cellular functions.
细胞功能涉及离子、代谢物、大分子和细胞器的时空相互作用。为了确定完成细胞功能的机制,我们使用了能够在同一细胞中产生多个生理参数和化学成分的时空信息的方法。我们证明,选定的荧光探针、荧光显微镜和成像方法的联合使用可以在同一个活细胞中产生关于至少五个独立细胞参数和成分的信息。此外,每个参数和/或成分的时空动态可以与其他一个或多个参数和/或成分相关联。基于五种不同的荧光探针,通过光谱分离紫外、可见和近红外光谱的特定区域,研究了五个参数。这些参数包括细胞核(Hoechst 33342)、线粒体(diIC1-[5])、内体(丽丝胺罗丹明B-葡聚糖)、肌动蛋白(荧光素)和细胞体积(Cy7-葡聚糖)。不运动的、汇合的瑞士3T3细胞未显示出任何可检测到的细胞形状极性,也未显示细胞核、内体或线粒体的分布极性。这些细胞还将大部分肌动蛋白组织成应力纤维。相比之下,迁移到体外伤口中的细胞表现出至少两个细胞器和细胞质重组阶段。在受伤后的最初3小时内,伤口边缘的细胞呈现出极化形状,细胞核位于细胞后部,片足中排除了内体和线粒体,并且失去了大部分高度组织化的应力纤维。在产生伤口后3至7小时之间,细胞表现出巨大变化。细胞变得高度伸长且具有运动性;内体和线粒体都渗透到片足中,而细胞核仍留在后部,肌动蛋白则保持在组织较差的结构中。确定离子、收缩蛋白、脂质、调节蛋白、代谢物和细胞器的时空动态及相互作用,应该能够使我们理解细胞迁移以及其他细胞功能的分子基础。