Aachener Verfahrenstechnik: Molecular Simulations and Transformations, Faculty of Mechanical Engineering, RWTH Aachen University , Schinkelstraße 2, 52062 Aachen, Germany.
J Phys Chem B. 2014 Feb 13;118(6):1621-9. doi: 10.1021/jp4115755. Epub 2014 Feb 4.
We present a systematic molecular dynamics study examining the roles of the individual ions of different alkylimidazolium-based ionic liquids in the solvation of cellulose. We examine combinations of chloride, acetate, and dimethylphosphate anions paired with cations of increasing tail length to elucidate the precise role of the cation in solvating cellulose. In all cases we find that the cation interacts with the nonpolar domains of cellulose through dispersion interactions, while interacting electrostatically with the anions bound at the polar domains of cellulose. Furthermore, the structure and dimensions of the imidazolium head facilitate the formation of large chains and networks of alternating cations and anions that form a patchwork, satisfying both the polar and nonpolar domains of cellulose. A subtle implication of increasing tail length is the dilution of the anion concentration in the bulk and at the cellulose surface. We show how this decreased concentration of anions in the bulk affects hydrogen bond formation with cellulose and how rearrangements from single hydrogen bonds to multiple shared hydrogen bonds can moderate the loss in overall hydrogen bond numbers. Additionally, for the tail lengths examined in this study we observe only a very minor effect of tail length on the solvation structure and overall interaction energies.
我们进行了一项系统的分子动力学研究,考察了不同烷基咪唑鎓基离子液体中单个离子在纤维素溶剂化中的作用。我们研究了氯、乙酸根和磷酸二甲酯阴离子与不同尾长的阳离子的组合,以阐明阳离子在溶剂化纤维素中的精确作用。在所有情况下,我们发现阳离子通过色散相互作用与纤维素的非极性区域相互作用,同时与结合在纤维素极性区域的阴离子静电相互作用。此外,咪唑鎓头的结构和尺寸有助于形成交替的阳离子和阴离子的大链和网络,形成拼凑物,满足纤维素的极性和非极性区域。尾长增加的一个微妙影响是在本体和纤维素表面处阴离子浓度的稀释。我们展示了这种在本体中阴离子浓度的降低如何影响与纤维素的氢键形成,以及从单氢键到多个共享氢键的重排如何缓和氢键总数的损失。此外,对于本研究中考察的尾长,我们仅观察到尾长对溶剂化结构和整体相互作用能的影响非常小。